Distributed algorithms
The Leader Election Protocol (IEEE 1394)

J.R. Abrial and Dominique Cansell and Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and
Distributed Systems
September 26-29 2006, Paris, France

This Session

- Background)

- An informal presentation of the protocol

- Step by step formal design |

- Short Conclusion.)

-)

IEEE 1394 High Performance Serial Bus (FireWire)

- It is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer

The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus

The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network is connected

- The network is acyclic

References (1)

BASIC

- IEEE. IEEE Standard for a High Performance Serial Bus.
Std 1394-1995. 1995

- IEEE. IEEE Standard for a High Performance Serial Bus
(supplement). Std 1394a-2000. 2000

References (2)

GENERAL

- N. Lynch. Distributed Algorithms. Morgan Kaufmann.
1996

- R. G. Gallager et al. A Distributed Algorithm for Minimum
Weight Spanning Trees. |EEE Trans. on Prog. Lang. and
Systems. 1983.

References (3)

MODEL CHECKING

- D.P.L. Simons et al. Mechanical Verification of the IEE 1394a Root
Contention Protocol using Uppaal2 Springer International Journal of

Software Tools for Technology Transfer. 2001

- H. Toetenel et al. Parametric verification of the IEEE 1394a Root
Contention Protocol using LPMC Proceedings of the 7th International
Conference on Real-time Computing Systems and Applications. IEEE

Computer Society Press. 2000

References (4)

THEOREM PROVING

- M. Deuvillers et al. Verification of the Leader Election:
Formal Method Applied to IEEE 1394. Formal Methods in
System Design. 2000

- J.R. Abrial et al. A Mechanically Proved and Incremental
Development of IEEE 1394. To be published 2002

Informal Absract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol

Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol

Let ND be a set of nodes (with at |east 2 nodes)

Ve
|

Let gr be agraph built and defined on ND

Ve
|

gr 1s asymmetric and irreflexive graph

gr 1s a graph built on ND gr C NDxXND

gr 1s a graph built on ND gr C NDxXND

gr is defined on ND dom (gr) = ND

gr 1s a graph built on ND gr C NDxXND

gr is defined on ND dom (gr) = ND

gr Is symmetric gr = gr—1

gr 1s a graph built on ND gr C NDxXND
gr is defined on ND dom (gr) = ND
gr 1S symmetric gr = gr—1

gr Is Irreflexive id(ND)Ngr =

gr 1s connected and acyclic

A Little Detour Through Trees

- A tree is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree is acyclic

- A tree Is connected from the root

the root i\

A tree t buillt on aset of nodes

/\

t 1safunction defined on ND except at the root

=< ° R\@ -

A cycle Its iInverse iImage

The nodes of acycle are included
IN thelr Inverse image

- Given
-aset ND
- a subset p of ND
- a binary relation t built on ND
- The inverse image of p under ¢ is denoted by ¢~ 1[p]

t=1p] = {z|lz e ND A Jy-(yep A (z,y) €t)}
- When t is a partial function, this reduces to

{x|zedom(t) A t(x) €p}

- If p Is Included In its inverse image, we have then:
V- (z€p=x€dm(t) N t(x) €Ep)
- Notice that the empty set enjoys this property

O C ¢t 1[0]

- The property of having no cycle is thus equivalent to:

The only subset p of ND s.t. p C ¢t~ 1[p] is EMPTY

(pgND A
C_l

vp-:f—t [p]

\p=0 /

The predicate tree (r, t)

The predicate tree (r, t)

risamemberof ND r & ND

The predicate tree (r, t)
risamemberoft ND r &€ ND

t is a function te ND—{r} —- ND

The predicate tree (r, t)

risamemberof ND r& ND

t is a function te ND—{r} —- ND
[pC ND A
- - p Ct 1 p]
t i1s acyclic Vp -
y P

\p=10)

t Is acyclic: equivalent formulations

[pCND A)
p Ct~1[p]

=

\p=10)

[qgC ND A)
recq N

t—1[q] C q
—

\ VD C q)

This gives an Induction Rule

[g CND A

recqg N

V- (x € ND—{r} AN t(x) Eq=>x € q)
—

\ ND Cq

The predicate tree (r, t)

risamemberof ND r & ND

t is a function te ND—{r} —- ND
[qC ND A)
recqg N
t is acyclic Vg-| t71[q] Cq
—

\ VD C q)

‘\./,

J

A spanning tree t of the graph gr

The predicate spanning (r, t, gr)

r,tis a tree tree (r,t)

t i1s included in gr t C gr

The graph gr is connected and acyclic (1)

- Defining a relation fn linking a node to the possible
spanning trees of gr having that node as a root:

fn C NDx(ND + ND)

[re ND A)
V(r,t)-ZSEND_HND
| (1) € fn < spanning (r,t,gr) |

The graph ¢r is connected and acyclic (2)

Totality of relation fn = Connectivity of gr

Functionality of relation fn = Acyclicity of gr

Summary of constants gr and fn

gr C NDXND
dom (gr) = ND

gr =gr-

1

id(ND)Nngr = 0

fne ND — (ND - ND)

V(r,t) -

[+ &€ ND A)
teND - ND
=

| ¢t = fn(r) < spanning (r,t,gr)

Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt € ND
tse ND «— ND

e~

elect =
BEGIN
rt,ts . spanning (rt, ts, gr)
END

First Refinement (1)

- Introducing a new variable, tr, corresponding to the
"tree" in construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction
of the tree

- The correspond to the ¢r function

- The blue nodes are the domain of ¢tr

- The function t¢r is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees

The predicate invariant (tr)

tr e ND - ND

The predicate invariant (tr)
tr e ND — ND

[pCND A)
ND—dom(tr) Cp A
Vp-| tr=1[p] Cp

—

\ VD& p)

The predicate invariant (tr)
tr e ND — ND

[pCND A)
ND—dom(tr) Cp A
Vp-| tr=1[p] Cp

—

\ VD& p)

dom (tr)<(trUtr—1) = dom (tr)<gr

First Refinement (2)

- Introducing the new event "progress”

- Refining the abstract event "elect”

- Back to the animation : Observe the "guard" of progress

When a red node x is connected to AT MOST one other
red node y then event "progress” can take place

—_—

progress =
ANY =,y WHERE
T,y € gr N
x & dom (tr) A
y & dom (tr) A
grl{z}] = tr— [{z}U{y}
THEN
tr :==tru{x — y}
END

To be proved

invariant(tr) A

T,y € gr N
x &tr A
ye&tr A

gri{z}] = tr 1 [{=z}1U{y}
—
invariant(tru{x — y})

When a red node z is ONLY connected to blue nodes then
event "elect" can take place

——

elect =
ANY x WHERE
x e ND AN
grl{z}] = tr~t{[{z}]
THEN
rt,ts .= x, tr
END

elect =

BEGIN
rt,ts : spanning (rt, ts, gr)
END
elect =
ANY x WHERE
x e ND A
gri{z}] = tr~*[{z}]
THEN
rt,ts .= x, tr
END

To be proved

invariant(tr) A
x e ND A
gri{z}] = tr~1[{x}]
ts = tr

—
spanning(z, ts, gr)

Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one is a bit difficult !)

Current state of the model

- 12 proofs

- Among which 5 were interactive (one is a bit difficult !)

- Animation of the current model

Second Refinement

- Nodes are communicating with their neighbors

- This is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next is a local animation

Sending a message

Mg

Receiving a message
Sending Acknowledgement

My
ack

Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr

Receiving Confirmation

My
ack
tr

Invariant (1)

msg € ND - ND
ack € ND - ND

tr C ack C msg

C

qgr

Node x sends a message to node y

send msg =
ANY z,y WHERE
T,y € gr N
x & dom (tr) A
y,x & tr A
gri{z}] = tr 1 [{z}]u{y} A
y,x & ack A
x & dom (msgq)
THEN
msg ;= msgUu{x — y}
END

Node y sends an acknowledgement to node x

send ack =
ANY x,y WHERE
x,y € msg—ack AN
y & dom (msg)
THEN
ack := ackU{zx — y}
END

Node x sends a confirmation to node y

—_—

progress =
ANY x,y WHERE
x,y € ack N
x & dom (tr)
THEN
tr :==tru{z — y}
END

Invariant (2)

[z,y € msg—ack)
=

V(x,y)-| z,y€gr A

x & dom (tr) A y & dom (tr) A

\ grl{z}] = tr {zHU{y}

[z y € ack A)
x & dom (tr)
v () :>:13 y e gr A
y & dom (tr) A
| grl{z}] = tr [{zHU{y}

Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation

Sending a message

Mg

Sending another message

Mg

msy

Discovering Contention

Mg

Discovering Contention

Recovering from Contention

Sending a message

Mg

Sending another message

Mg

msy

Discovering Contention

Mg

Discovering Contention

Recovering from Contention

Sending a Message

msy

Sending another message

Mg

msy

Discovering Contention

Mg

Discovering Contention

Recovering from Contention

Sending a message

Mg

Receiving a message
Sending Acknowledgement

My
ack

Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr

Receiving Confirmation

My
ack
tr

Discovering the Contention (1)

- Node y discovers the contention with node x because:
- It has sent a message to node x
- It has not yet received a response from node x

- It receives instead a message from node x

Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries
IS SUPPOSED TO BE BOUNDED
BY = ms

- The time 7 Is the maximum transmission time

between 2 connected nodes

A Partial Solution

- Each node waits for = ms after its own discovery

- After this, each node thus knows that the other
has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever

A Better Solution (1)

- Each node waits for = ms after its own discovery
- Each node then choses with equal probability:
- either to wait for a short delay

- or to walit for a large delay

- Each node then retries

A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures

Node y discovers a contention with node x

send ack = contention =
ANY z,y WHERE ANY x,y WHERE
x,y € msg—ack N x,y € msg—ack N
y & dom (msg) y € dom (msg)
THEN THEN
ack == ackU{zx — y} cnt := centU{x — y}
END END

- Introducing a dummy contention channel: ent

cnt E ND — ND

cnt C msg

ack Ncnt = ()

Solving the contention (simulating the r delay)

solve_contention =
ANY x,y WHERE
T,y < entUcent 1
THEN
msg .= msg—cnt ||
cnt := ()
END

Summary of Second Refinement

- /3 proofs

- Among which 34 were interactive

Third Refinement: Localization

- The representation of the graph ¢gr is modified

- The representation of the tree tr is modified

- Other data structures are localized

Localization (1)

The graph gr and the tree tr are now localized

nbe ND — P(ND)
V- (x € ND = nb(z) = gr[{z}])
sn € ND — P(ND)

V- (x € ND = sn(z) C tr 1[{z}])

Localization (2)

bm C ND

bm = dom (msg)
bt C ND
bt = dom (tr)

ba € ND — P(ND)

Vz - (z € ND = ba(z) = ack L [{z}])

- Node zx Is elected the leader

—_—

elect =
ANY ©* WHERE
r e ND A
nb(x) = sn(x)
THEN
rt .= x
END

- Node = sends a message to node y (y Is unique)

—_—

send msg =

ANY x,y WHERE
x e ND—bm A
y € ND—(ba(x)Usn(xz)) A
nb(z) = sn(z)U{y)

THEN
msg (= msgU{z — y} ||
bm = bmU{x}

END

- Node y sends an acknowledgement to node x

send ack =
ANY =,y WHERE
T,y € msg N
z & ba(y) A
y & bm
THEN

ack == ackU{x — y} ||

ba(y) := ba(y)U{z}
END

- Node x sends a confirmation to node y

progress =

ANY x, y WHERE
x,y € ack N
x & bt

THEN
tr :=trU{z — y} |
bt .= btU{x}

END

- Node y receives confirmation from node x

rcv.enf =
ANY x,y WHERE
T,y etr A
z & sn(y)
THEN

sn(y) = sn(y)U{z)
END

contention =
ANY x, y WHERE
T,y € entUent—1 A
x & ba(y) A
y € bm
THEN
cnt = cntU{x — y}
END

solve_contention =
ANY x,y WHERE
T,y & cntUcnt_l

THEN
msg .= msg—cnt ||
bm = bm—dom (cnt) ||
cnt 1= ()

END

Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive

Main Summary

- 119 proofs

- Among which 63 were interactive

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures

