Distributed algorithms
The Leader Election Protocol (IEEE 1394)

J.R. Abrial and Dominique Cansell and Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and
Distributed Systems
September 26-29 2006, Paris, France



This Session

- Background )

- An informal presentation of the protocol

- Step by step formal design |

- Short Conclusion. )

-)




IEEE 1394 High Performance Serial Bus (FireWire)

- It is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer




The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus




The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network is connected

- The network is acyclic
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Informal Absract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol


























































Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol




Let ND be a set of nodes (with at |east 2 nodes)
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Let gr be agraph built and defined on ND
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gr 1s asymmetric and irreflexive graph
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gr 1s a graph built on ND gr C NDxXND
gr is defined on ND dom (gr) = ND
gr 1S symmetric gr = gr—1

gr Is Irreflexive id(ND)Ngr =



gr 1s connected and acyclic



A Little Detour Through Trees

- A tree is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree is acyclic

- A tree Is connected from the root






the root i\

A tree t buillt on aset of nodes
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t 1safunction defined on ND except at the root
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A cycle Its iInverse iImage

The nodes of acycle are included
IN thelr Inverse image



- Given
-aset ND
- a subset p of ND
- a binary relation t built on ND
- The inverse image of p under ¢ is denoted by ¢~ 1[p]

t=1p] = {z|lz e ND A Jy-(yep A (z,y) €t)}
- When t is a partial function, this reduces to

{x|zedom(t) A t(x) €p}



- If p Is Included In its inverse image, we have then:
V- (z€p=x€dm(t) N t(x) €Ep)
- Notice that the empty set enjoys this property

O C ¢t 1[0]



- The property of having no cycle is thus equivalent to:

The only subset p of ND s.t. p C ¢t~ 1[p] is EMPTY

(pgND A
C_l

vp-:f—t [p]

\p=0 /




The predicate tree (r, t)
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The predicate tree (r, t)

risamemberof ND r& ND

t is a function te ND—{r} —- ND
[ pC ND A
- - p Ct 1 p]
t i1s acyclic Vp -
y P

\p=10 )



t Is acyclic: equivalent formulations

[ pCND A )
p Ct~1[p]

=

\p=10 )

[ qgC ND A )
recq N

t—1[q] C q
—

\ VD C q )



This gives an Induction Rule

[ g CND A

recqg N

V- (x € ND—{r} AN t(x) Eq=>x € q)
—

\ ND Cq




The predicate tree (r, t)

risamemberof ND r & ND

t is a function te ND—{r} —- ND
[ qC ND A )
recqg N
t is acyclic Vg-| t71[q] Cq
—

\ VD C q )
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A spanning tree t of the graph gr



The predicate spanning (r, t, gr)

r,tis a tree tree (r,t)

t i1s included in gr t C gr



The graph gr is connected and acyclic (1)

- Defining a relation fn linking a node to the possible
spanning trees of gr having that node as a root:

fn C NDx(ND + ND)

[ re ND A )
V(r,t)-ZSEND_HND
| (1) € fn < spanning (r,t,gr) |




The graph ¢r is connected and acyclic (2)

Totality of relation fn = Connectivity of gr

Functionality of relation fn = Acyclicity of gr




Summary of constants gr and fn

gr C NDXND
dom (gr) = ND

gr =gr-

1

id(ND)Nngr = 0

fne ND — (ND - ND)

V(r,t) -

[+ &€ ND A )
teND - ND
=

| ¢t = fn(r) < spanning (r,t,gr)




Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt € ND
tse ND «— ND

e~

elect =
BEGIN
rt,ts . spanning (rt, ts, gr)
END




First Refinement (1)

- Introducing a new variable, tr, corresponding to the
"tree" in construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction
of the tree































- The correspond to the ¢r function

- The blue nodes are the domain of ¢tr

- The function t¢r is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees



The predicate invariant (tr)

tr e ND - ND



The predicate invariant (tr)
tr e ND — ND

[ pCND A )
ND—dom(tr) Cp A
Vp-| tr=1[p] Cp

—

\ VD& p )




The predicate invariant (tr)
tr e ND — ND

[ pCND A )
ND—dom(tr) Cp A
Vp-| tr=1[p] Cp

—

\ VD& p )

dom (tr)<(trUtr—1) = dom (tr)<gr






First Refinement (2)

- Introducing the new event "progress”

- Refining the abstract event "elect”

- Back to the animation : Observe the "guard" of progress










When a red node x is connected to AT MOST one other
red node y then event "progress” can take place

—_—

progress =
ANY =,y WHERE
T,y € gr N
x & dom (tr) A
y & dom (tr) A
grl{z}] = tr— [{z}U{y}
THEN
tr :==tru{x — y}
END




To be proved

invariant(tr) A

T,y € gr N
x &tr A
ye&tr A

gri{z}] = tr 1 [{=z}1U{y}
—
invariant(tru{x — y})










When a red node z is ONLY connected to blue nodes then
event "elect" can take place

——

elect =
ANY x WHERE
x e ND AN
grl{z}] = tr~t{[{z}]
THEN
rt,ts .= x, tr
END




elect =

BEGIN
rt,ts : spanning (rt, ts, gr)
END
elect =
ANY x WHERE
x e ND A
gri{z}] = tr~*[{z}]
THEN
rt,ts .= x, tr
END




To be proved

invariant(tr) A
x e ND A
gri{z}] = tr~1[{x}]
ts = tr

—
spanning(z, ts, gr)




Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one is a bit difficult !)




Current state of the model

- 12 proofs

- Among which 5 were interactive (one is a bit difficult !)

- Animation of the current model


























































Second Refinement

- Nodes are communicating with their neighbors

- This is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next is a local animation













Sending a message

Mg




Receiving a message
Sending Acknowledgement

My
ack




Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr




Receiving Confirmation

My
ack
tr




Invariant (1)

msg € ND - ND
ack € ND - ND

tr C ack C msg

C

qgr



Node x sends a message to node y

send msg =
ANY z,y WHERE
T,y € gr N
x & dom (tr) A
y,x & tr A
gri{z}] = tr 1 [{z}]u{y} A
y,x & ack A
x & dom (msgq)
THEN
msg ;= msgUu{x — y}
END




Node y sends an acknowledgement to node x

send ack =
ANY x,y WHERE
x,y € msg—ack AN
y & dom (msg)
THEN
ack := ackU{zx — y}
END




Node x sends a confirmation to node y

—_—

progress =
ANY x,y WHERE
x,y € ack N
x & dom (tr)
THEN
tr :==tru{z — y}
END




Invariant (2)

[ z,y € msg—ack )
=

V(x,y)-| z,y€gr A

x & dom (tr) A y & dom (tr) A

\ grl{z}] = tr {zHU{y}

[z y € ack A )
x & dom (tr)
v () :>:13 y e gr A
y & dom (tr) A
| grl{z}] = tr [{zHU{y}



Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation



















Sending a message

Mg




Sending another message

Mg

msy




Discovering Contention

Mg




Discovering Contention




Recovering from Contention
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Recovering from Contention




Sending a Message
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Sending another message
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Recovering from Contention




Sending a message

Mg




Receiving a message
Sending Acknowledgement

My
ack




Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr




Receiving Confirmation

My
ack
tr




Discovering the Contention (1)

- Node y discovers the contention with node x because:
- It has sent a message to node x
- It has not yet received a response from node x

- It receives instead a message from node x




Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries
IS SUPPOSED TO BE BOUNDED
BY = ms

- The time 7 Is the maximum transmission time

between 2 connected nodes




A Partial Solution

- Each node waits for = ms after its own discovery

- After this, each node thus knows that the other
has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever




A Better Solution (1)

- Each node waits for = ms after its own discovery
- Each node then choses with equal probability:
- either to wait for a short delay

- or to walit for a large delay

- Each node then retries




A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures




Node y discovers a contention with node x

send ack = contention =
ANY z,y WHERE ANY x,y WHERE
x,y € msg—ack N x,y € msg—ack N
y & dom (msg) y € dom (msg)
THEN THEN
ack == ackU{zx — y} cnt := centU{x — y}
END END

- Introducing a dummy contention channel: ent

cnt E ND — ND

cnt C msg

ack Ncnt = ()






Solving the contention (simulating the r delay)

solve_contention =
ANY x,y WHERE
T,y < entUcent 1
THEN
msg .= msg—cnt ||
cnt := ()
END




Summary of Second Refinement

- /3 proofs

- Among which 34 were interactive




Third Refinement: Localization

- The representation of the graph ¢gr is modified

- The representation of the tree tr is modified

- Other data structures are localized




Localization (1)

The graph gr and the tree tr are now localized

nbe ND — P(ND)
V- (x € ND = nb(z) = gr[{z}])
sn € ND — P(ND)

V- (x € ND = sn(z) C tr 1[{z}])




Localization (2)

bm C ND

bm = dom (msg)
bt C ND
bt = dom (tr)

ba € ND — P(ND)

Vz - (z € ND = ba(z) = ack L [{z}])




- Node zx Is elected the leader

—_—

elect =
ANY ©* WHERE
r e ND A
nb(x) = sn(x)
THEN
rt .= x
END




- Node = sends a message to node y (y Is unique)

—_—

send msg =

ANY x,y WHERE
x e ND—bm A
y € ND—(ba(x)Usn(xz)) A
nb(z) = sn(z)U{y)

THEN
msg (= msgU{z — y} ||
bm = bmU{x}

END




- Node y sends an acknowledgement to node x

send ack =
ANY =,y WHERE
T,y € msg N
z & ba(y) A
y & bm
THEN

ack == ackU{x — y} ||

ba(y) := ba(y)U{z}
END




- Node x sends a confirmation to node y

progress =

ANY x, y WHERE
x,y € ack N
x & bt

THEN
tr :=trU{z — y} |
bt .= btU{x}

END




- Node y receives confirmation from node x

rcv.enf =
ANY x,y WHERE
T,y etr A
z & sn(y)
THEN

sn(y) = sn(y)U{z)
END




contention =
ANY x, y WHERE
T,y € entUent—1 A
x & ba(y) A
y € bm
THEN
cnt = cntU{x — y}
END




solve_contention =
ANY x,y WHERE
T,y & cntUcnt_l

THEN
msg .= msg—cnt ||
bm = bm—dom (cnt) ||
cnt 1= ()

END




Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive




Main Summary

- 119 proofs

- Among which 63 were interactive
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Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures




