Distributed algorithms
 The Leader Election Protocol (IEEE 1394)

J.R. Abrial and Dominique Cansell and Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and Distributed Systems
September 26-29 2006, Paris, France

This Session

- Background :-)
- An informal presentation of the protocol :-)
- Step by step formal design :-|
- Short Conclusion. :-)

IEEE 1394 High Performance Serial Bus (FireWire)

- It is an international standard
- There exists a widespread commercial interest in its correctness
- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development
- Made of three layers (physical, link, transaction)
- The protocol under study is the Tree Identify Protocol
- Situated in the Bus Reset phase of the physical layer

The Problem (1)

- The bus is used to transport digitized video and audio signals
- It is "hot-pluggable"
- Devices and peripherals can be added and removed at any time
- Such changes are followed by a bus reset
- The leader election takes place after a bus reset in the network
- A leader needs to be chosen to act as the manager of the bus

The Problem (2)

- After a bus reset: all nodes in the network have equal status
- A node only knows to which nodes it is directly connected
- The network is connected
- The network is acyclic

References (1)

BASIC

- IEEE. IEEE Standard for a High Performance Serial Bus. Std 1394-1995. 1995
- IEEE. IEEE Standard for a High Performance Serial Bus (supplement). Std 1394a-2000. 2000

References (2)

GENERAL

- N. Lynch. Distributed Algorithms. Morgan Kaufmann. 1996
- R. G. Gallager et al. A Distributed Algorithm for Minimum Weight Spanning Trees. IEEE Trans. on Prog. Lang. and Systems. 1983.

References (3)

MODEL CHECKING

- D.P.L. Simons et al. Mechanical Verification of the IEE 1394a Root Contention Protocol using Uppaal2 Springer International Journal of Software Tools for Technology Transfer. 2001
- H. Toetenel et al. Parametric verification of the IEEE 1394a Root Contention Protocol using LPMC Proceedings of the 7th International Conference on Real-time Computing Systems and Applications. IEEE Computer Society Press. 2000

References (4)

THEOREM PROVING

- M. Devillers et al. Verification of the Leader Election:

Formal Method Applied to IEEE 1394. Formal Methods in
System Design. 2000

- J.R. Abrial et al. A Mechanically Proved and Incremental

Development of IEEE 1394. To be published 2002

Informal Absract Properties of the Protocol

- We are given a connected and acyclic network of nodes
- Nodes are linked by bidirectional channels
- We want to have one node being elected the leader in a finite time
- This is to be done in a distributed and non-deterministic way
- Next are two distinct abstract animations of the protocol

O

Summary of Development Process

- Formal definition and properties of the network
- A one-shot abstract model of the protocol
- Presenting a (still abstract) loop-like centralized solution
- Introducing message passing between the nodes (delays)
- Modifying the data structure in order to distribute the protocol

Let ND be a set of nodes (with at least 2 nodes)

Let gr be a graph built and defined on ND

$$
g r \subseteq N D \times N D
$$

$g r$ is a graph built on $N D$
$g r$ is defined on $N D$
$g r \subseteq N D \times N D$
$\operatorname{dom}(g r)=N D$
$g r$ is a graph built on $N D$
$g r$ is defined on $N D$
$g r$ is symmetric
$g r \subseteq N D \times N D$
$\operatorname{dom}(g r)=N D$
$g r=g r^{-1}$
$g r$ is a graph built on $N D$
$g r$ is defined on $N D$
$g r$ is symmetric
$g r$ is irreflexive

$$
g r \subseteq N D \times N D
$$

$$
\operatorname{dom}(g r)=N D
$$

$$
g r=g r^{-1}
$$

$i d(N D) \cap g r=\emptyset$

A Little Detour Through Trees

- A tree is a special graph
- A tree has a root
- A tree has a, so-called, father function
- A tree is acyclic
- A tree is connected from the root

A tree t built on a set of nodes

t is a function defined on ND except at the root

- Given
- a set $N D$
- a subset p of $N D$
- a binary relation t built on $N D$
- The inverse image of p under t is denoted by $t^{-1}[p]$
$t^{-1}[p] \cong\{x \mid x \in N D \wedge \exists y \cdot(y \in p \wedge(x, y) \in t)\}$
- When t is a partial function, this reduces to

$$
\{x \mid x \in \operatorname{dom}(t) \wedge t(x) \in p\}
$$

- If p is included in its inverse image, we have then:

$$
\forall x \cdot(x \in p \Rightarrow x \in \operatorname{dom}(t) \wedge t(x) \in p)
$$

- Notice that the empty set enjoys this property

$$
\emptyset \subseteq t^{-1}[\emptyset]
$$

- The property of having no cycle is thus equivalent to:

The only subset p of $N D$ s.t. $p \subseteq t^{-1}[p]$ is EMPTY

$$
\forall p \cdot\left(\begin{array}{c}
p \subseteq N D \wedge \\
p \subseteq t^{-1}[p] \\
\Rightarrow \\
p=\emptyset
\end{array}\right)
$$

The predicate tree (r, t)

The predicate tree (r, t)

r is a member of $N D \quad r \in N D$

The predicate tree (r, t)

r is a member of $N D \quad r \in N D$
t is a function

$$
t \in N D-\{r\} \rightarrow N D
$$

The predicate tree (r, t)

r is a member of $N D \quad r \in N D$
t is a function

$$
t \in N D-\{r\} \rightarrow N D
$$

t is acyclic

$$
\forall p \cdot\left(\begin{array}{l}
p \subseteq N D \wedge \\
p \subseteq t^{-1}[p] \\
\Rightarrow \\
p=\emptyset
\end{array}\right)
$$

t is acyclic: equivalent formulations

$$
\forall p \cdot\left(\begin{array}{l}
p \subseteq N D \wedge \\
p \subseteq t^{-1}[p] \\
\Rightarrow \\
p=\emptyset
\end{array}\right) \quad \Leftrightarrow \quad \forall q \cdot\left(\begin{array}{l}
q \subseteq N D \wedge \\
r \in q \wedge \\
t^{-1}[q] \subseteq q \\
\Rightarrow \\
N D \subseteq q
\end{array}\right)
$$

This gives an Induction Rule

$$
\forall q \cdot\left(\begin{array}{l}
q \subseteq N D \wedge \\
r \in q \wedge \\
\forall x \cdot(x \in N D-\{r\} \wedge t(x) \in q \Rightarrow x \in q) \\
\Rightarrow \\
N D \subseteq q
\end{array}\right)
$$

The predicate tree (r, t)

r is a member of $N D \quad r \in N D$
t is a function

$$
t \in N D-\{r\} \rightarrow N D
$$

t is acyclic

$$
\forall q \cdot\left(\begin{array}{c}
q \subseteq N D \wedge \\
r \in q \wedge \\
t^{-1}[q] \subseteq q \\
\Rightarrow \\
N D \subseteq q
\end{array}\right)
$$

A spanning tree t of the graph gr

The predicate spanning $(r, t, g r)$
r, t is a tree
t is included in $g r$
tree (r, t)
$t \subseteq g r$

The graph $g r$ is connected and acyclic (1)

- Defining a relation $f n$ linking a node to the possible spanning trees of $g r$ having that node as a root:

$$
\begin{aligned}
& f n \subseteq N D \times(N D \leftrightarrow N D) \\
& \forall(r, t) \cdot\left(\begin{array}{l}
r \in N D \wedge \\
t \in N D \leftrightarrow N D \\
\Rightarrow \\
(r, t) \in f n \Leftrightarrow \operatorname{spanning}(r, t, g r)
\end{array}\right)
\end{aligned}
$$

The graph $g r$ is connected and acyclic (2)

Totality of relation $f n \Rightarrow$ Connectivity of $g r$

Functionality of relation $f n \Rightarrow$ Acyclicity of $g r$

Summary of constants $g r$ and $f n$

$$
\begin{aligned}
& g r \subseteq N D \times N D \\
& \operatorname{dom}(g r)=N D \\
& g r=g r^{-1} \\
& \text { id }(N D) \cap g r=\emptyset \\
& f n \in N D \rightarrow(N D \leftrightarrow N D) \\
& \forall(r, t) \cdot\left(\begin{array}{l}
r \in N D \wedge \\
t \in N D \leftrightarrow N D \\
\Rightarrow \\
t=f n(r) \Leftrightarrow \text { spanning }(r, t, g r)
\end{array}\right.
\end{aligned}
$$

Election in One Shot: Building a Spanning Tree

- Variables $r t$ and $t s$

$$
\begin{aligned}
& r t \in N D \\
& t s \in N D \leftrightarrow N D \\
& \begin{array}{l}
\text { elect } \cong \\
\text { BEGIN } \\
r t, t s: \text { spanning }(r t, t s, g r) \\
\text { END }
\end{array}
\end{aligned}
$$

First Refinement (1)

- Introducing a new variable, tr, corresponding to the "tree" in construction
- Introducing a new event: the progression event
- Defining the invariant
- Back to the animation : Observe the construction of the tree

O

- The green arrows correspond to the $t r$ function
- The blue nodes are the domain of $t r$
- The function $t r$ is a forest (multi-tree) on nodes
- The red nodes are the roots of these trees

The predicate invariant (tr)

$$
t r \in N D \leftrightarrow N D
$$

The predicate invariant (tr)

$$
\begin{aligned}
& \operatorname{tr} \in N D \mapsto N D \\
& \forall p \cdot\left(\begin{array}{l}
p \subseteq N D \quad \wedge \\
N D-\operatorname{dom}(t r) \subseteq p \quad \wedge \\
t r^{-1}[p] \subseteq p \\
\Rightarrow \\
N D \subseteq p
\end{array}\right)
\end{aligned}
$$

The predicate invariant (tr)

$$
\begin{aligned}
& \operatorname{tr} \in N D \rightarrow N D \\
& \forall p \cdot\left(\begin{array}{l}
p \subseteq N D \quad \wedge \\
N D-\operatorname{dom}(t r) \subseteq p \quad \wedge \\
t r^{-1}[p] \subseteq p \\
\Rightarrow \\
N D \subseteq p
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{dom}(t r) \triangleleft\left(t r \cup t r^{-1}\right)=\operatorname{dom}(t r) \triangleleft g r
$$

First Refinement (2)

- Introducing the new event "progress"
- Refining the abstract event "elect"
- Back to the animation : Observe the "guard" of progress

When a red node x is connected to AT MOST one other red node y then event "progress" can take place
progress $\widehat{=}$
ANY x, y WHERE

$$
\begin{aligned}
& x, y \in g r \wedge \\
& x \notin \operatorname{dom}(\operatorname{tr}) \wedge \\
& y \notin \operatorname{dom}(\operatorname{tr}) \wedge \\
& g r[\{x\}]=\operatorname{tr}^{-1}[\{x\}] \cup\{y\}
\end{aligned}
$$

THEN

$$
\operatorname{tr}:=\operatorname{tr} \cup\{x \mapsto y\}
$$

END

To be proved

$$
\begin{aligned}
& \text { invariant }(t r) \wedge \\
& x, y \in g r \wedge \\
& x \notin \operatorname{tr} \wedge \\
& y \notin t r \wedge \\
& g r[\{x\}]=\operatorname{tr}^{-1}[\{x\}] \cup\{y\} \\
& \Rightarrow \\
& \text { invariant }(\operatorname{tr} \cup\{x \mapsto y\})
\end{aligned}
$$

When a red node x is ONLY connected to blue nodes then event "elect" can take place
elect $\xlongequal{\widehat{ }}$
ANY x WHERE

$$
\begin{aligned}
& x \in N D \wedge \\
& \operatorname{gr}[\{x\}]=\operatorname{tr}^{-1}[\{x\}]
\end{aligned}
$$

THEN

$$
r t, t s:=x, t r
$$

END

elect $\widehat{=}$

BEGIN

$r t, t s$: spanning ($r t, t s, g r$)
END
elect $\widehat{=}$
ANY x WHERE

$$
\begin{aligned}
& x \in N D \wedge \\
& \operatorname{gr}[\{x\}]=\operatorname{tr}^{-1}[\{x\}]
\end{aligned}
$$

THEN

$$
r t, t s:=x, t r
$$

END

To be proved

Summary of First Refinement

- 15 proofs
- Among which 9 were interactive (one is a bit difficult !)

Current state of the model

- 12 proofs
- Among which 5 were interactive (one is a bit difficult !)
- Animation of the current model

O

Second Refinement

- Nodes are communicating with their neighbors
- This is done by means of messages
- Messages are acknowledged
- Acknowledgements are confirmed
- Next is a local animation

Sending a message

Receiving a message

Sending Acknowledgement

Receiving Acknowledgement

 Sending Confirmation

Invariant (1)

$$
\begin{aligned}
& m s g \in N D \mapsto N D \\
& a c k \in N D \mapsto N D \\
& t r \subseteq a c k \subseteq m s g \subseteq g r
\end{aligned}
$$

Node x sends a message to node y

send_msg $\widehat{=}$

ANY x, y WHERE

$$
\begin{aligned}
& x, y \in g r \wedge \\
& x \notin \operatorname{dom}(t r) \wedge \\
& y, x \notin \operatorname{tr} \wedge \\
& g r[\{x\}]=t r^{-1}[\{x\}] \cup\{y\} \wedge \\
& y, x \notin a c k \wedge \\
& x \notin \operatorname{dom}(m s g)
\end{aligned}
$$

THEN

$$
m s g:=m s g \cup\{x \mapsto y\}
$$

END

Node y sends an acknowledgement to node x

send ack $\widehat{=}$

ANY x, y WHERE
$x, y \in m s g-a c k \wedge$
$y \notin \operatorname{dom}(m s g)$

THEN

$$
\text { ack }:=\operatorname{ack} \cup\{x \mapsto y\}
$$

END

Node x sends a confirmation to node y

progress

ANY x, y WHERE
$x, y \in a c k \wedge$
$x \notin \operatorname{dom}(t r)$

THEN

$\operatorname{tr}:=\operatorname{tr} \cup\{x \mapsto y\}$
END

Invariant (2)

$$
\begin{aligned}
& \forall(x, y) \cdot\left(\begin{array}{l}
x, y \in m s g-a c k \\
\Rightarrow \\
x, y \in g r \wedge \\
x \notin \operatorname{dom}(t r) \wedge y \notin \operatorname{dom}(t r) \wedge \\
g r[\{x\}]=t r^{-1}[\{x\}] \cup\{y\}
\end{array}\right) \\
& \forall(x, y) \cdot\left(\begin{array}{l}
x, y \in a c k \wedge \\
x \notin \operatorname{dom}(t r) \\
\Rightarrow \\
x, y \in g r \wedge \\
y \notin \operatorname{dom}(t r) \wedge \\
g r[\{x\}]=t r^{-1}[\{x\}] \cup\{y\}
\end{array}\right)
\end{aligned}
$$

Second Refinement: The problem of contention

- Explaining the problem
- Proposing a partial solution
- Towards a better treatment
- Back to the local animation

Sending a message

Sending another message

Discovering Contention

Sending a message

Sending another message

Sending another message

Discovering Contention

Sending a message

Receiving a message

Sending Acknowledgement

Receiving Acknowledgement

 Sending Confirmation

Discovering the Contention (1)

- Node y discovers the contention with node x because:
- It has sent a message to node x
- It has not yet received a response from node x
- It receives instead a message from node x

Discovering the Contention (2)

- Node x also discovers the contention with node y
- Assumption: The time between both discoveries IS SUPPOSED TO BE BOUNDED

BY τ ms

- The time τ is the maximum transmission time between 2 connected nodes

A Partial Solution

- Each node waits for τ ms after its own discovery
- After this, each node thus knows that the other has also discovered the contention
- Each node then retries immediately
- PROBLEM: This may continue for ever

A Better Solution (1)

- Each node waits for τ ms after its own discovery
- Each node then choses with equal probability:
- either to wait for a short delay
- or to wait for a large delay
- Each node then retries

A Better Solution (2)

- Question: Does this solves the problem?
- Are we sure to eventually have one node winning ?
- Answer: Listen carefully to Caroll Morgan's lectures

Node y discovers a contention with node x

$$
\begin{aligned}
& \text { send ack } \widehat{=} \\
& \text { ANY } x, y \text { WHERE } \\
& x, y \in m s g-a c k \wedge \\
& y \notin \operatorname{dom}(m s g) \\
& \text { THEN } \\
& \quad a c k:=a c k \cup\{x \mapsto y\} \\
& \text { END }
\end{aligned}
$$

contention $\widehat{=}$
ANY x, y WHERE

$$
x, y \in m s g-a c k \wedge
$$

$y \in \operatorname{dom}(m s g)$
THEN
$c n t:=c n t \cup\{x \mapsto y\}$
END

- Introducing a dummy contention channel: cnt

$$
\begin{aligned}
& c n t \in N D \rightarrow N D \\
& c n t \subseteq m s g \\
& \text { ack } \cap c n t=\emptyset
\end{aligned}
$$

Solving the contention (simulating the τ delay)

solve_contention $\widehat{=}$
ANY x, y WHERE

$$
x, y \in c n t \cup c n t^{-1}
$$

THEN

$$
\begin{aligned}
& m s g:=m s g-c n t \quad \| \\
& c n t:=\emptyset
\end{aligned}
$$

END

Summary of Second Refinement

- 73 proofs
- Among which 34 were interactive

Third Refinement: Localization

- The representation of the graph $g r$ is modified
- The representation of the tree $t r$ is modified
- Other data structures are localized

The graph $g r$ and the tree $t r$ are now localized

$$
\begin{aligned}
& n b \in N D \rightarrow \mathbb{P}(N D) \\
& \forall x \cdot(x \in N D \Rightarrow n b(x)=\operatorname{gr}[\{x\}]) \\
& s n \in N D \rightarrow \mathbb{P}(N D) \\
& \forall x \cdot\left(x \in N D \Rightarrow \operatorname{sn}(x) \subseteq \operatorname{tr}^{-1}[\{x\}]\right)
\end{aligned}
$$

Localization (2)

$$
\begin{aligned}
& b m \subseteq N D \\
& b m=\operatorname{dom}(m s g) \\
& b t \subseteq N D \\
& b t=\operatorname{dom}(t r) \\
& b a \in N D \rightarrow \mathbb{P}(N D) \\
& \forall x \cdot\left(x \in N D \Rightarrow b a(x)=a c k^{-1}[\{x\}]\right)
\end{aligned}
$$

- Node x is elected the leader

elect $\widehat{=}$

ANY x WHERE

$$
\begin{aligned}
& x \in N D \wedge \\
& n b(x)=\operatorname{sn}(x)
\end{aligned}
$$

THEN

$$
r t:=x
$$

END

- Node x sends a message to node y (y is unique)
send msg $\widehat{=}$
ANY x, y WHERE

$$
\begin{aligned}
& x \in N D-b m \wedge \\
& y \in N D-(b a(x) \cup \operatorname{sn}(x)) \wedge \\
& n b(x)=\operatorname{sn}(x) \cup\{y\}
\end{aligned}
$$

THEN

$$
\begin{aligned}
& m s g:=m s g \cup\{x \mapsto y\} \\
& b m:=b m \cup\{x\}
\end{aligned}
$$

END

- Node y sends an acknowledgement to node x

send ack $\widehat{=}$

 ANY x, y WHERE$x, y \in m s g \wedge$
$x \notin b a(y) \wedge$
$y \notin b m$
THEN

$$
\begin{aligned}
& a c k:=a c k \cup\{x \mapsto y\} \\
& b a(y):=b a(y) \cup\{x\}
\end{aligned}
$$

END

- Node x sends a confirmation to node y

progress \cong
ANY x, y WHERE

$$
\begin{aligned}
& x, y \in a c k \wedge \\
& x \notin b t
\end{aligned}
$$

THEN

$$
\begin{aligned}
\operatorname{tr} & :=\operatorname{tr} \cup\{x \mapsto y\} \\
b t & :=b t \cup\{x\}
\end{aligned}
$$

END

- Node y receives confirmation from node x

rev_cnf $\widehat{ }$

ANY x, y WHERE
$x, y \in \operatorname{tr} \wedge$
$x \notin \operatorname{sn}(y)$
THEN

$$
\operatorname{sn}(y):=\operatorname{sn}(y) \cup\{x\}
$$

END

contention $\widehat{=}$

ANY x, y WHERE

$$
\begin{aligned}
& x, y \in c n t \cup c n t^{-1} \wedge \\
& x \notin b a(y) \wedge \\
& y \in b m
\end{aligned}
$$

THEN
$c n t:=c n t \cup\{x \mapsto y\}$
END

solve contention $\widehat{ }$

ANY x, y WHERE
$x, y \in c n t \cup c n t^{-1}$

THEN

$m s g:=m s g-c n t \quad \|$
$b m:=b m-\operatorname{dom}(c n t)$
$c n t:=\emptyset$
END

Summary of Third Refinement

- 29 proofs
- Among which 19 were interactive

Main Summary

- 119 proofs
- Among which 63 were interactive

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework
- Resolving the mathematical problem in one shot

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework
- Resolving the mathematical problem in one shot
- Resolving the same problem on a step by step basis

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework
- Resolving the mathematical problem in one shot
- Resolving the same problem on a step by step basis
- Involving communication by means of messages

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework
- Resolving the mathematical problem in one shot
- Resolving the same problem on a step by step basis
- Involving communication by means of messages
- Towards the localization of data structures

