A (short) summary on B and case studies on protocols

Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and Distributed Systems September 26-29 2006, Paris, France

Summary on the tools and on the notations

- Atelier B supports the classical B method: MACHINE, OPERATIONS, REFINE-MENT, PROOFS,
- ✓ The event-based B method is not yet supported by a tool
- ✓ Atelier B and B4free are used to generate proof obligations for the invariant preservation
- $\checkmark\,$ Additional proof obligations are added in the invariant
- ✓ An Events System Model: events which are triggered
- \checkmark An Abstract Machine: operations which are called

Name	Syntax	Definition
Binary Relation	$s \leftrightarrow t$	$\mathcal{P}(s imes t)$
Composition of relations	$r_1; r_2$	$\{x,y \mid x \in a \land y \in b \land$
		$\exists z.(z \in c \land x, z \in r_1 \land z, y \in r_2) \}$
Inverse relation	r^{-1}	$\{x, y x \in \mathcal{P}(a) \land y \in \mathcal{P}(b) \land y, x \in r\}$
Domain	dom(r)	$\{a \mid a \in s \land \exists b. (b \in t \land a \mapsto b \in r)\}$
Range	ran(r)	$\operatorname{dom}(r^{-1})$
Identity	id(s)	$\{x, y x \in s \land y \in s \land x = y\}$
Restriction	$s \lhd r$	id(s); r
Co-restriction	$r \vartriangleright s$	r; id(s)
Anti-restriction	$s \triangleleft r$	$(dom(r){-}s) \lhd r$
Anti-co-restriction	$r \triangleright s$	$r hdow (ran(r) {-} s)$
Image	r[w]	$ran(w \lhd r)$
Overriding	$q \Leftrightarrow r$	$(dom(r) \triangleleft q) \cup r$
Partial Function	$s \nrightarrow t$	$\{r \mid r \in s \leftrightarrow t \land (r^{-1}; r) \subseteq id(t)\}$

Event: E	Before-After Predicate
BEGIN $x : P(x_0, x)$ END	P(x,x')
SELECT $G(x)$ THEN $x : P(x_0, x)$ END	$G(x) \wedge P(x,x')$
ANY t where $G(t,x)$ then $x : P(x_0,x,t)$ end	$\exists t \cdot (G(t,x) \land P(x,x',t))$

 Proving lemmas or theorems from definitions of mathematical structures (constants and properties)

✓ Stop for the demo

 Proving proof obligations generated from an events system model

Summary: Sequent Calculus

✓ Sequent:

 $HYP \vdash P$

 \checkmark Rules using sequents:

Notations

	Antecedents	Consequent
name	$\begin{cases} HYP_1 \vdash P_1 \\ \vdots \\ HYP_n \vdash P_n \end{cases}$	$HYP \vdash P$

 $\begin{array}{l} Predicate \land Predicate \\ Predicate \Rightarrow Predicate \\ \neg Predicate \end{array}$

	Antecedents	Consequent
BR1		$P \vdash P$
BR2	$\begin{cases} HYP \vdash P \\ HYP \subseteq HYP' \end{cases}$	$HYP' \vdash P$
BR3	$P \in HYP$	$HYP \vdash P$
BR4	$\left\{ \begin{array}{l} HYP \vdash P \\ HYP, P \vdash Q \end{array} \right.$	$HYP \vdash Q$

	Antecedents	Consequent
	$ (HYP \vdash P)$	
R1		$HYP \vdash P \land Q$
	$ HYP \vdash Q$	
<i>R</i> 2		$(HYP \vdash P)$
	$HYP \vdash P \land Q$	
R2'		$ HYP \vdash Q$

DED (R3) = DEDUCTION RULE

MP = Modus Ponens (BR4 + R4)

RULES OF CONTRADICTION "reductio ad absurdum")

A proof

$HYP \vdash P \Rightarrow \neg \neg P$	Sequent 1
Apply DED (R3)	
$HYP, P \vdash \neg \neg P$	Sequent 2
Apply R6 with X	
$HYP, P, \neg P \vdash X$	
$HYP, P, \neg P \vdash \neg X$	
X is P and we use BR3	
$HYP, P, \neg P \vdash P$	Sequent 3
$HYP, P, \neg P \vdash \neg P$	Sequent 4

Automating proofs obligations checking

- B tools provide automatic proof procedure for sequent calculus
- pr
- pp (predicate prover)
- Atelier B (ClearSy): http://www.atelierb.societe.com/
- Click'n'Prove: http://www.loria.fr/~cansell/cnp.html
- B4free (ClearSy): http://www.b4free.com/

Constructing a protocol

- Paradigms: parachutist, myope, ...
- A protocol is a process which manages a communication between partners
- The main purpose is to ensure the communication of an item or items from an agent to another agent
- Finding a first very abstract model with main events
- Refining abstract model to take into account assumptions on communications
- Localization of variables.

- ◇ FIFO Protocol without loss of messages, duplication and reordering
- ◇ FIFO Protocol without loss of messages and duplication and with reordering
- ◇ Data Transfer Protocol of Stenning and more

MACHINE

fif o protocol 0

SETS

DATA

CONSTANTS

NN, FILE

PROPERTIES

 $NN \in \mathbb{N} \land$

 $NN \neq 0 \land$

 $\textit{FILE} \in 1..NN \longrightarrow \textit{DATA}$

VARIABLES

file

INVARIANT

 $\mathit{file} \in 1..\mathit{NN} woheadrightarrow \mathit{DATA}$

INITIALISATION file := \emptyset **OPERATIONS** TRANSMISSION = BEGIN file := FILEEND;sndd = **BEGIN** file \in (file \in 1..NN DATA) END; $rcvd = BEGIN file \in (file \in 1..NN)$ DATA) END END

REFINEMENT *fifoprotocol*1 **REFINES** *fifoprotocol*0 **VARIABLES** ss, rr, file, dch **INVARIANT** $ss \in \mathbb{N} \wedge rr \in \mathbb{N} \wedge$ $file \in 1..NN \rightarrow DATA \land$ $dch \in 1..NN \rightarrow DATA \wedge$ $rr < ss \wedge$ file = $(1..rr) \triangleleft FILE \land$ $dch \subseteq (1..ss{-1}) \lhd FILE \land$ file \subset dch \wedge ss < NN+1 \wedge $ss > 1 \wedge rr < NN$

ASSERTIONS $rr = NN \Rightarrow file = FILE$ **INITIALISATION** file := $\emptyset \parallel ss$:= 1 $\parallel rr$:= 0 $\parallel dch$:= \emptyset **OPERATIONS** TRANSMISSION **SELECT** *rr* = **NNTHEN** SKIP END; sndd = select ss < NN**THEN** $dch(ss) := FILE(ss) \parallel$ ss := ss + 1 END; $rcvd = SELECT rr + 1 \in DOM(dch)$ **THEN** file(rr+1) := dch(rr+1) || rr := rr + 1 ENDEND

FIFO Protocol: no loss and duplication and with reordering

MACHINE	
reliable0	
SETS	INITIALISATION
DATA	file := \emptyset
CONSTANTS	OPERATIONS
NN, FILE	
PROPERTIES	TRAINSMISSION = BEGIN THE := FILEEND;
$NN \in \mathbb{N} \land$	$sndd = BEGIN file \in (file \in 1NN)$
$NN \neq 0 \land$	DAIA) END;
$\textit{FILE} \in 1NN \longrightarrow \textit{DATA}$	$rcvd = BEGIN file \in (file \in 1NN)$
VARIABLES	DATA) END
file	END
INVARIANT	
$\textit{file} \in 1NN woheadrightarrow \textit{DATA}$	

FIFO Protocol: no loss and duplication and with reordering

END

REFINEMENT *reliable*1

REFINES *reliable*0

VARIABLES

ss, file, dch

INVARIANT

 $file \in 1..NN \Rightarrow DATA \land$ $dch \subseteq (1..NN) \times DATA \land$ $ss \in \mathbb{N} \land$ $ss \ge 1 \land$ $ss \le NN+1 \land$ $dch \cup file = (1..(ss-1)) \lhd FILE$

INITIALISATION file := $\emptyset \parallel dch$:= $\emptyset \parallel ss$:= 1 **OPERATIONS** TRANSMISSION = SELECT ss $NN+1 \wedge dch = \emptyset$ THEN SKIP END; sndd = select ss < NN**THEN** dch := $dch \cup \{(ss)\}$ $FILE(ss))\}\parallel$ ss := ss + 1 END;rcvd = ANY rr, mesWHERE $rr \in \mathbb{N} \land mes \in DATA \land rr$ $mes \in dch$ **THEN** file(rr) := mes || $dch := dch - \{rr \mapsto mes\} \text{END}$

- ◇ Goal: transfer data file from an agent to another agent
- \diamond an agent sender and an agent receiver
- ◇ Both agents S and R are localized on two differents sites

 \diamond The file is a total function over $\{1, \ldots, n\}$ into DATA.

 $n \in \mathbb{N} \land$ size of file $FILE \in 1..n \longrightarrow DATA$ file to send

 \diamond The result *file* is a partial function from $\{1, \ldots, n\}$ into *DATA*.

VARIABLES
file
INVARIANT
$\textit{file} \in 1n \longrightarrow \textit{DATA}$

transmission = BEGIN file := FILEEND

Second model: refining the data transfer

 \diamond Data are sent one by one and one assumes that no datum is lost

Two new variables are introduced for controling the sending and the receiving actions.

VARIABLESs, rcontrol of messages traffic

 \Diamond *FILE* is progressively transmitted and *file* contains a part of *FILE*, during the protocol.

INVARIANTfile = $(1..r) \lhd FILE$

 \diamond Communication channel between S and R is modelles by a variable dch and a confirmation channel between R and S allows us to synchronise sent data.

VARIABLES	
dch, ach	
INVARIANT	
$\mathit{dch}\ \subseteq\ (1s) \lhd \mathit{FILE} \land$	
ach \subseteq 1 r	

\diamond Initial state:

INITIALISATION file := $\emptyset \parallel ss$:= $1 \parallel rr$:= $0 \parallel dch$:= $\emptyset \parallel ach$:= \emptyset

- ◇ Events *sndd*, *rcvd*, *snda*, *rcva*are new and model the effective communications.
- \diamond Event *TRANSMISSION* models the end of the transmission.

 $sndd = select ss \leq NN then dch(ss) := FILE(ss) end;$

 $rcvd = SELECT rr + 1 \in DOM(dch)$

THEN *file*(rr+1) := $dch(rr+1) \parallel rr$:= rr+1 END;

Events for sending acknowledgments

snda = SELECT $rr \neq 0$ THEN ach := $ach \cup \{rr\}$ END;

 $rcva = select ss \in ach then ss := ss + 1 end;$

View of the second model

Second refinement and third model

- ♦ Channels are not reliable!
- ◇ Data may be reordered, duplicated and destroyed!
 - A channel is a set: duplication
 - Daemons remove data

 $rmvd = any ii, dd where ii \mapsto dd \in dch then dch := dch - \{ii \mapsto dd\} end;$

 $rmva = ANY ii WHERE ii \in ach THEN ach := ach - \{ii\} END$

Invariant of the final model

INVARIANT	
$ss \in \mathbb{N} \land$	
$rr \in \mathbb{N} \wedge$	
$\textit{file} \in 1NN \leftrightarrow \textit{DATA} \land$	
$\mathit{dch} \in 1\mathit{NN} \nleftrightarrow \mathit{DATA} \land$	
$rr \leq ss \wedge$	
$ss \leq rr+1 \wedge$	
file = (1rr) \triangleleft FILE \wedge	
$\mathit{dch}\ \subseteq\ (1ss)\ \lhd\ \mathit{FILE}\land$	
ach \subseteq 1rr \wedge	
$ss \leq NN+1 \wedge$	
$ss \geq 1 \land$	
$rr \leq NN$	

Safety properties of the last model

ASSERTIONS $rr = NN \Rightarrow file = FILE;$ $rr \leq ss;$ $ss \leq rr + 1;$ $rr = ss \Rightarrow rr \neq 0;$ $\forall (mm, kk).(kk \mapsto mm \in dch \Rightarrow kk \leq ss);$ $\forall kk.(kk \in 1..NN \land kk \in ach \Rightarrow kk \leq rr)$

- \diamond How to get the alternating bit protocol?
- ◇ How to model protocols related to WEB services?
- ♦ What about probablilistic algorithms?
- ◇ Next the leader election