# A (short) summary on B and case studies on protocols 

Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and Distributed Systems
September 26-29 2006, Paris, France

## Summary on the tools and on the notations

$\checkmark$ Atelier B supports the classical B method: MACHINE, OPERATIONS, REFINEMENT, PROOFS,
$\checkmark$ The event-based B method is not yet supported by a tool

Atelier B and B4free are used to generate proof obligations for the invariant preservation
$\checkmark$ Additional proof obligations are added in the invariant
$\checkmark$ An Events System Model: events which are triggered
$\checkmark$ An Abstract Machine: operations which are called

## Summary: Set-theoretical notations



## Summary: events

| Event: $E$ | Before-After Predicate |
| :--- | :--- |
| BEGIN $x: P\left(x_{0}, x\right)$ END | $P\left(x, x^{\prime}\right)$ |
| SELECT $G(x)$ THEN $x: P\left(x_{0}, x\right)$ END | $G(x) \wedge P\left(x, x^{\prime}\right)$ |
| ANY $t$ WHERE $G(t, x)$ THEN $x: P\left(x_{0}, x, t\right)$ END | $\exists t \cdot\left(G(t, x) \wedge P\left(x, x^{\prime}, t\right)\right)$ |

## Summary: tools

$\checkmark$ Proving lemmas or theorems from definitions of mathematical structures (constants and properties)

Stop for the demo
$\checkmark$ Proving proof obligations generated from an events system model

## Summary: Sequent Calculus

$\checkmark$ Sequent:

$$
H Y P \vdash P
$$

$\checkmark$ Rules using sequents:

$$
\begin{gathered}
H Y P_{1} \vdash P_{1} \\
\bullet \\
\bullet \\
\bullet \\
H Y P_{n} \vdash P_{n} \\
\hline H Y P
\end{gathered}
$$

## Notations

|  | Antecedents | Consequent |
| :--- | :--- | :--- |
| name | $\begin{cases}H Y P_{1} \vdash P_{1} \\ : & H Y P \vdash P \\ H Y P_{n} \vdash P_{n}\end{cases}$ |  |

$$
\begin{gathered}
\text { Predicate } \wedge \text { Predicate } \\
\text { Predicate } \Rightarrow \text { Predicate } \\
\neg \text { Predicate }
\end{gathered}
$$

## Basic rules

|  | Antecedents | Consequent |
| :---: | :---: | :---: |
| BR1 |  | $P \vdash P$ |
| BR2 | $\left\{\begin{array}{cc}H Y P \vdash P & H Y P^{\prime} \vdash P \\ H Y P \subseteq H Y P^{\prime}\end{array}\right.$ |  |
| BR3 | $P \in H Y P$ | $H Y P \vdash P$ |
| BR4 | $\left\{\begin{array}{cc}H Y P \vdash P & H Y P \vdash Q \\ H Y P, P \vdash Q\end{array}\right.$ |  |

## Basic rules for $\wedge$

|  | Antecedents | Consequent |
| :---: | :---: | :---: |
| R1 | $\left\{\begin{array}{l}H Y P \vdash P \\ H Y P \vdash Q\end{array}\right.$ | $H Y P \vdash P \wedge Q$ |
| $R 2$ | HYP $\vdash P \wedge Q$ |  |\(\left\{\begin{array}{l}H Y P \vdash P <br>

H Y P \vdash Q <br>
\hline\end{array}\right.\)

## Basic rules for $\Rightarrow$

|  | Antecedents | Consequent |
| :---: | :---: | :---: |
| DED | $H Y P, P \vdash Q$ | $H Y P \vdash P \Rightarrow Q$ |
| R4 | $H Y P \vdash P \Rightarrow Q$ | $H Y P, P \vdash Q$ |
| MP | $\left\{\begin{array}{l}H Y P \vdash P \\ H Y P \vdash P \Rightarrow Q\end{array}\right.$ | $H Y P \vdash Q$ |

DED (R3) = DEDUCTION RULE
MP = Modus Ponens (BR4 + R4)

## Basic rules for $\neg$

|  | Antecedents | Consequent |
| :---: | :---: | :---: |
| R5 | $\left\{\begin{array}{l}H Y P, \neg Q \vdash P \\ H Y P, \neg Q \vdash \neg P\end{array}\right.$ | HYP $\vdash Q$ |
| R6 | $\left\{\begin{array}{l}H Y P, Q \vdash P \\ H Y P, Q \vdash \neg P\end{array}\right.$ | $H Y P \vdash \neg Q$ |

RULES OF CONTRADICTION "reductio ad absurdum")

## A proof

$$
H Y P \vdash P \Rightarrow \neg \neg P
$$

Apply DED (R3)

$$
H Y P, P \vdash \neg \neg P
$$

Apply R6 with X

$$
\begin{aligned}
& H Y P, P, \neg P \vdash X \\
& H Y P, P, \neg P \vdash \neg X
\end{aligned}
$$

$X$ is $P$ and we use BR3

$$
\begin{aligned}
& H Y P, P, \neg P \vdash P \\
& H Y P, P, \neg P \vdash \neg P
\end{aligned}
$$

Sequent 3
Sequent 4

## Automating proofs obligations checking

- B tools provide automatic proof procedure for sequent calculus
- pr
- pp (predicate prover)
- Atelier B (ClearSy): http://www.atelierb.societe.com/
- Click'n’Prove: http://www.loria.fr/~cansell/cnp.html
- B4free (ClearSy): http://www.b4free.com/


## Constructing a protocol

- Paradigms: parachutist, myope, ...
- A protocol is a process which manages a communication between partners
- The main purpose is to ensure the communication of an item or items from an agent to another agent
- Finding a first very abstract model with main events
- Refining abstract model to take into account assumptions on communications
- Localization of variables.


## Protocols

$\diamond$ FIFO Protocol without loss of messages, duplication and reordering
$\diamond$ FIFO Protocol without loss of messages and duplication and with reordering
$\diamond$ Data Transfer Protocol of Stenning and more ...

## FIFO Protocol: no loss, duplication and reordering

```
MACHINE
    fifoprotocol0
SETS
    DATA
CONSTANTS
    NN, FILE
PROPERTIES
    NN\in\mathbb{N}\wedge
    NN\not= 0^
    FILE \in 1..NN\longrightarrow DATA
VARIABLES
    file
INVARIANT
    file }\in1..NN->DAT
```


## FIFO Protocol: no loss, duplication and reordering

```
REFINEMENT fifoprotocol1
REFINES fifoprotocol0
VARIABLES ss, rr, file, dch
INVARIANT
    ss\in\mathbb{N}\wedgerr\in\mathbb{N}\wedge
    file }\in1..NN->DATA
    dch \in 1..NN }->\mathrm{ DATA^
    rr\leqss^
    file = (1..rr) }\triangleleftFILE
    dch \subseteq(1..ss-1)\triangleleftFILE^
    file}\subseteqdch\wedgess\leqNN+1
    ss \geq1^rr \leq NN
```


## ASSERTIONS

$$
r r=N N \Rightarrow \text { file }=F I L E
$$

## INITIALISATION

$$
\text { file }:=\emptyset\|s s:=1\| r r:=0 \| d c h:=\emptyset
$$

OPERATIONS
TRANSMISSION $=$ SELECT $r r$ NNTHEN SKIP END;
sndd $=\operatorname{seLEct} s s \leq N N$
THEN $d c h(s s):=\operatorname{FILE}(s s) \|$

$$
s s:=s s+1 \mathrm{END} ;
$$

$r c v d=$ SELECT $r r+1 \in \operatorname{DOM(dch)~}$
then file $(r r+1):=d c h(r r+1) \|$

$$
r r:=r r+1 \text { END }
$$

END

## FIFO Protocol: no loss and duplication and with reordering

```
MACHINE
    reliable0
SETS
    DATA
CONSTANTS
    NN, FILE
PROPERTIES
    NN\in\mathbb{N}\wedge
    NN\not= 0^
    FILE \in 1..NN\longrightarrow DATA
VARIABLES
    file
INVARIANT
file }\in1..NN-> DATA
```


## FIFO Protocol: no loss and duplication and with reordering

REFINEMENT reliable 1
REFINES reliable 0
VARIABLES
ss, file, dch
INVARIANT
file $\in 1 . . N N \rightarrow$ DATA $\wedge$
$d c h \subseteq(1 . . N N) \times$ DATA $\wedge$

$s s \in \mathbb{N} \wedge$
$s s \geq 1 \wedge$

$s s \leq N N+1 \wedge$
$d c h \cup$ file $=(1 . .(s s-1)) \triangleleft$ FILE

## INITIALISATION

$$
\text { file }:=\emptyset\|d c h:=\emptyset\| s s:=1
$$

OPERATIONS
TRANSMISSION $=$ SELECT SS
$N N+1 \wedge d c h=\emptyset$ THEN SKIP END;
sndd $=$ sELECT $s s \leq N N$

$$
\begin{aligned}
& \text { THEN } d c h \quad:=\quad d c h \cup\{(s s \\
& \text { FILE }(s s))\} \| \\
& s s:=s s+1 \text { END; }
\end{aligned}
$$

rcvd $=$ ANY rr, mes
Where $r r \in \mathbb{N} \wedge$ mes $\in$ DATA $\wedge r r$ mes $\in$ dch
then file(rr) := mes\|

$$
d c h:=d c h-\{r r \mapsto m e s\} \text { END }
$$

END

## Data transfer protocol Stenning

$\diamond$ Goal: transfer data file from an agent to another agent
$\diamond$ an agent sender and an agent receiver
$\diamond$ Both agents $\mathbf{S}$ and $\mathbf{R}$ are localized on two differents sites

## First model

$\diamond$ The file is a total function over $\{1, \ldots, n\}$ into $D A T A$.

```
n\in\mathbb{N}\wedge size of file
FILE }\in1..n\longrightarrowDATA file to sen
```

$\diamond$ The result file is a partial function from $\{1, \ldots, n\}$ into $D A T A$.

```
VARIABLES
    file
INVARIANT
    file }\in1..n\longrightarrowDAT
```


## First model

## transmission $=$ BEGIN file $:=$ FILEEND

## Second model: refining the data transfer

$\diamond$ Data are sent one by one and one assumes that no datum is lost
$\diamond$ Two new variables are introduced for controling the sending and the receiving actions.

```
VARIABLES
    s,r control of messages traffic
```

$\diamond F I L E$ is progressively transmitted and file contains a part of $F I L E$, during the protocol.

```
INVARIANT
    file =(1..r)\triangleleftFILE
```


## Second model: refining the data transfer

$\diamond$ Communication channel between S and R is modelles by a variable $d c h$ and a confirmation channel between $R$ and $S$ allows us to synchronise sent data.

```
VARIABLES
    dch, ach
INVARIANT
    dch \subseteq(1..s)}\triangleleftFILE
    ach \subseteq1..r
```


## Events

$\diamond$ Initial state:

$$
\begin{aligned}
& \text { INITIALISATION } \\
& \qquad \text { file }:=\emptyset\|s s:=1\| r r:=0 \| \text { dch }:=\emptyset \| \text { ach }:=\emptyset
\end{aligned}
$$

$\diamond$ Events sndd, rcvd, snda, rcvaare new and model the effective communications.

Event TRANSMISSION models the end of the transmission.

## Events for sending data

$s n d d=$ seLect $s s \leq N N$ then $d c h(s s):=F I L E(s s)$ END;
$r c v d=\operatorname{SELECT} r r+1 \in \operatorname{DOM}(d c h)$
THEN file $(r r+1):=d c h(r r+1) \| r r:=r r+1$ END;

## Events for sending acknowledgments

```
snda = SELECT rr #= 0 THEN ach := ach \cup{rr} END;
rcva = sELECT ss }\in\mathrm{ ach THEN ss := ss + 1 END;
```


## View of the second model



## Second refinement and third model

$\diamond$ Channels are not reliable!
$\diamond$ Data may be reordered, duplicated and destroyed!

- A channel is a set: duplication
- Daemons remove data


## Daemons

$$
\text { rmvd }=\text { ANY } i i, d d \text { WHERE } i i \mapsto d d \in d c h \text { THEN } d c h:=d c h-\{i i \mapsto d d\} \text { END; }
$$

```
rmva = ANY ii WHERE ii }\in\mathrm{ achTHEN ach := ach - {ii} END
```


## Invariant of the final model

$$
\begin{aligned}
& \text { INVARIANT } \\
& \begin{array}{l}
s s \in \mathbb{N} \wedge \\
r r \quad \in \mathbb{N} \wedge \\
\text { file } \in 1 . . N N \rightarrow D A T A \wedge \\
d c h \in 1 . . N N \rightarrow D A T A \wedge \\
r r \leq s s \wedge \\
s s \leq r r+1 \wedge \\
\text { file }=(1 . . r r) \triangleleft F I L E \wedge \\
d c h \subseteq(1 . . s s) \triangleleft F I L E \wedge \\
a c h \subseteq 1 . . r r \wedge \\
s s \leq N N+1 \wedge \\
s s \geq 1 \wedge \\
r r \leq N N
\end{array}
\end{aligned}
$$

## Safety properties of the last model

$$
\begin{aligned}
& \text { ASSERTIONS } \\
& \quad \begin{array}{l}
r r=N N \Rightarrow \text { file }=F I L E ; \\
\\
r r \leq s s ; \\
\\
s s \leq r r+1 ; \\
\\
r r=s s \Rightarrow r r \neq 0 ; \\
\forall(m m, k k) .(k k \mapsto m m \in d c h \Rightarrow k k \leq s s) ; \\
\\
\forall k k .(k k \in 1 . . N N \wedge k k \in a c h \Rightarrow k k \leq r r)
\end{array}
\end{aligned}
$$

## Questions

$\diamond$ How to get the alternating bit protocol?
$\diamond$ How to model protocols related to WEB services?
$\diamond$ What about probablilistic algorithms?
$\diamond$ Next the leader election

