
The B Modelling Language

Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and

Distributed Systems

September 26-29 2006, Paris, France

B is a modelling language

3 B is used for modelling closed systems

3 B is not a programming language but a language for developing models of
systems

3 A B model is defined by a set of events

3 A B model is characterized by an invariant

3 A B model states safety properties of the current system

3 A B model is internally consistent with respect to a list of proof obligations

1

Events System Models

An event system model is made of

State constants and state variables constrained by a state invariant

A finite set of events

Proofs ensures the consistency between the invariant and the events

An event system model can be refined

Proofs must ensure the correctness of refinement

2

B models

MODEL
m

SETS
s

CONSTANTS
c

PROPERTIES
P (s, c)

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
A(x)

INITIALISATION
<substitution>

EVENTS
<list of events>

END

2� A model has a name m

2� the clause SETS, CONSTANTS and the clause PROP-
ERTIES introduce information related to the mathe-
matical structure of the problem to solve

2� The invariant I(x) types the variable x, which is as-
sumed to be initialized with respect to the initial con-
ditions and which is preserved by events (or transi-
tions) of the list of events.

3

Meaning of the B model

3 s, c and P (s, c) define the mathematical structure of the problem: Γ(s, c).

3 Each computation starts by a state satisfying Init(x).

3 The list of possible events is {e1, . . . , en} and any event e is characterized by
a binary relation BA(e)(x, x′) over possible values of x.

3 For each event e, there is a condition called a guard which is true, when the
event is observed.

4

Events

Event : E Before-After Predicate

BEGIN x : P (x0, x) END P (x, x′)

SELECT G(x) THEN x : P (x0, x) END G(x) ∧ P (x, x′)

ANY t WHERE G(t, x) THEN x : P (x0, x, t) END ∃ t· (G(t, x) ∧ P (x, x′, t))

5

Guards of event

Event : E Guard: grd(E)

BEGIN S END TRUE

SELECT G(x) THEN T END G(x)

ANY t WHERE G(t, x) THEN T END ∃ t·G(t, x)

6

Proof obligations for a B model

Proof obligation

(INV1) Γ(s, c) ` Init(x) ⇒ I(x)

(INV2) Γ(s, c) ` I(x) ∧ BA(e)(x, x′) ⇒ I(x′)

(DEAD) Γ(s, c) ` I(x) ⇒ (grd(e1) ∨ . . . grd(en))

(SAFE) Γ(s, c) ` I(x) ⇒ A(x)

(FIS) Γ(s, c) ` I(x) ∧ grd (E) ⇒ ∃x′ · P (x, x′)

7

Modelling systems: Hello world!

MODEL
FACTORIAL EVENTS

CONSTANTS factorial, p
PROPERTIES

p ∈ N∧ factorial ∈ N ↔ N∧ 0 7→ 1 ∈ factorial∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial)∧

∀f ·


f ∈ N ↔ N∧
0 7→ 1 ∈ f∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f


VARIABLES

result
INVARIANT

result ∈ N
ASSERTIONS

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

INITIALISATION
result :∈ N

EVENTS
computation = BEGIN result := factorial(p) END

END

8

Modelling systems: communications

SETS

MESSAGES; AGENTS

PROPERTIES

MESSAGES 6= ∅∧

AGENTS 6= ∅

VARIABLES

sent, got, lost

9

Modelling systems: communications

INVARIANT

sent ⊆ AGENTS×AGENTS×MESSAGES∧

got ⊆ AGENTS×AGENTS×MESSAGES∧

lost ⊆ AGENTS×AGENTS×MESSAGES∧

(got∪ lost) ⊆ sent∧

lost = ∅

INITIALISATION

sent := ∅‖

got := ∅‖

lost := ∅

10

Modelling systems: communications

SENDING =

ANY agent1, agent2, message WHERE

agent1 ∈ AGENTS ∧
agent2 ∈ AGENTS ∧
message ∈ MESSAGES ∧
agent1 7→ agent2 7→ message /∈ sent

THEN

sent := sent ∪ {agent1 7→ agent2 7→ message}
END;

RECEIVING = ANY agent1, agent2, message WHERE

agent1 ∈ AGENTS ∧
agent2 ∈ AGENTS ∧
message ∈ MESSAGES ∧
agent1 7→ agent2 7→ message ∈ sent ∧
agent1 7→ agent2 7→ message /∈ got

THEN

got := got ∪ {agent1 7→ agent2 7→ message}
END;

LOOSING = BEGIN SKIP END

11

Modelling systems: problems?

ø Systems are generally very complex

ø Invariant should be strong enough for proving safety properties

ø Problems for modelling: finding suitable mathematical structures,

listing events or actions of the system, proving proof obligations,

. . .

12

Solution: refining models

, To understand more and more the system

, To distribute the complexity of the system

, To distribute the difficulties of the proof

, To improve explanations

, Validation (step by step)

, Refinement (invariant & behavior)

13

Refinement of models

3 we can add more details (like superposition),

3 we can add new events (we can observe more transformations),

3 we prove that the concrete behaviors are abstract ones

; we got the abstract invariant for free.

3 each new event refines SKIP

3 no deadlock

3 abstract events occur (new events decrease something)

14

Refinement

REFINEMENT r
REFINES m
SETS t
CONSTANTS d
PROPERTIES Q(t, d)
VARIABLES y
INVARIANT

J(x, y)
VARIANT

V (y)
ASSERTIONS

B(y)
INITIALISATION

y : INIT (y)
EVENTS

<list of events>
END

15

Refinement of a model by another one

-

-X X’

Y Y’

I(X) I(X’)

J(X,Y) J(X’,Y’)

abstract ev(X,X’)

concrete ev(Y,Y’)

16

Proof obligations for refinement

(REF1) INITC(y) ⇒ ∃x·(INIT(x) ∧ J(x, y)) :

The initial condition of the refinement model imply that there exists an abstract
value in the abstract model such that that value satisfies the initial conditions of the
abstract one and implies the new invariant of the refinement model.

(REF2) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′.(BAA(x, x′) ∧ J(x′, y′)) :

The invariant in the refinement model is preserved by the refined event and the
activation of the refined event triggers the corresponding abstract event.

(REF3) I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ J(x, y′) :

The invariant in the refinement model is preserved by the refined event but the
event of the refinement model is a new event which was not visible in the abstract
model; the new event refines skip.

17

Proof obligations for refinement

(REF4): I(x) ∧ J(x, y) ∧ (G1(x) ∨ . . . ∨ Gn(x)) ⇒ H1(y) ∨ . . . ∨ Hk(y) :

The guards of events in the refinement model are strengthened and we have to
prove that the refinement model is not more blocked than the abstract.

(REF5): I(x) ∧ J(x, y)) ⇒ V (y) ∈ N

(REF6): I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y′) < V (y) :

New events should not block forever abstract ones.

(REF7): Γ(s, c) ` I(x) ∧ J(x, y) ∧ grd (E) ⇒ ∃y′ · P (y, y′)

18

Refining the factorial model

REFINEMENT RFACT
REFINES FACTORIAL_EVENTS
VARIABLES fac,result,m
INVARIANT
fac : NATURAL +-> NATURAL & fac <: factorial &
dom(fac)<: 0..m & dom(fac) /= {}
VARIANT n-x
INITIALISATION x:=0 || fac:={0|->1}
EVENTS
prog = SELECT p /: dom(fac) THEN

ANY x WHERE
x:NATURAL & x : dom(fac) & x+1 /: dom(fac)

THEN
fac(x+1):=(x+1)*fac(x)

END
END;

computation = SELECT p : dom(fac) THEN result:=fac(p) END
END

19

The factorial model

MODEL
FACTORIAL EVENTS

CONSTANTS factorial, m
PROPERTIES

m ∈ N∧ factorial ∈ N ↔ N∧ 0 7→ 1 ∈ factorial∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial)∧

∀f ·


f ∈ N ↔ N∧
0 7→ 1 ∈ f∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f


VARIABLES

result
INVARIANT

result ∈ N
ASSERTIONS

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

INITIALISATION
result :∈ N

EVENTS
computation = begin result := factorial(m) end

END

20

Summary on the B modelling language

• A language for expressing mathematical structures: sets, relations, functions,
. . .

• A language for expressing transitions over states: events

• A language for expressing safety properties

• A language of system models

• And more . . . like modalities

• Next session: case studies

21

