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Formal modelling: why?

3 Analysing requirements

3 Providing a view of the system

3 Justifying design decisions

3 Integrating mechanized and sound techniques for analysing systems.

3 Improving the communication among designers

3 Promoting abstraction and refinement techniques for developing (systems) mod-
els

3 Improving software systems quality
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What systems?

3 Distributed systems: distributed algorithms, agents-based systems, . . .

3 Embedded systems at home: mobile phone, wash machine, dish washer,
micro-wave. . .

3 Hardware/software systems: SoC

3 Manufacturing systems

2



Organisation of lectures

3 To develop models of realistic systems

3 To introduce step by step concepts and notations

3 To use tools

3 To play with abstractions and concretizations over models.
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Summary of the lectures

� Introduction and History of B

� Event-based systems in B

� Simple case studied

� Sequential algorithms and Data Modelling

� Distributed programming

� Proof based System Engineering
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Tools for the lectures

3 Mathematical logic and set theory: B(ourbaki)

3 Proof assistants and Development assistants: B4free, Atelier B, . . .

3 Model checking: not required, but choose your way!

3 Events System Models

3 Induction

3 Case studies: sequential algorithms, distributed algorithms, control access, . . .
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The History of B

3 Jean-Raymond Abrial: Z in the 70s, B in the 80s, event B in the 90s and B]

in the current millenium.

3 Books: the B Book by Jean-Raymond Abrial in 1996, the B] Book by
Jean-Raymond Abrial in ????, others textbooks by K. Lano, H. Habrias, E.
Sekerinski and K. Sere, . . .

3 Conferences: ZB serie, . . .

3 Success story: Meteor ligne 14 (control system), Smartcards (Gemplus), . . .

3 Case studies: sequential algorithms (Schorr and Waite, . . . ), distributed al-
gorithms (IEEE 1394 leader election protocol, PCI Bus Producer/Consumer
Model,
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Modelling systems

3 A system is observed

3 Observation of things which are changing over the time

3 A system is characterized by a state

3 A state is made up of contextual constant informations over the problem
theory and of modifiable flexible informations over the system.
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Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .
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Properties of system

A safety property S over x states that something bad will not happen: S(x) means
that S holds for x

An invariant property I over x states a strong safety property

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

(S(x0)
α1→ S(x1)

α2→ S(x2)
τ→ S(x2)

α3→ S(x3)
α4→ . . .

αi→ S(xi)
τ→

S(xi)
αi+1→ S(xi+1)

αi+2→ . . .

or equivalently ∀i ∈ N : S(xi)
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Your decision?

3 You can check for every i in N that S(xi) is true but it can be long if states are
different

3 You can compute an abstraction of the set of states

3 You can try to prove and for instance the induction principle may be usefull

3 So be carefull and improve your modelling before to run the checker

3 Use the induction
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State properties of a system

3 A state property namely P (x) is a first order predicate with free variables x,
where x is a flexible variable.

3 P (x) denotes the set of values of x such that P (x) holds.

3 P (x) is interpreted over states of flexible variables for a system (s ∈ States)

3 s |= P (x) means that P (x) holds, when one substitutes occurences of x by
values of x, s(x), in P (x).
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Examples of state properties

3 Mutual exclusion

3 Deadlock freedom

3 Partial correcteness

3 Safety properties
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Relation/action over states

3 An action α over states is a relation between values of state variables before
and values of variables after

α(x, x′) or x
α−→ x′

3 Flexible variable x has two values x and x′.

3 Priming flexible variables is borrowed from TLA (See lectures of S. Merz)

3 Hypothesis 1: Values of x belongs to a set of values called VALUES

3 Hypothesis 2: Relations over x and x′ belong to a set of relations {r0, . . . , rn}
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Operational model of a system

3 A system S is observed with respect to flexible variables x.

3 Flexible variables x of S are modified according to a finite set of relations over
the set of values VALUES: {r0, . . . , rn}

3 INIT(x) denotes the set of possible intial values for x.

OMS = (x, VALUES, INIT(x), {r0, . . . , rn})
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Safety and invariance of system

3 Hypothesis 3: OMS = (x, VALUES, INIT(x), {r0, . . . , rn})

3 Hypothesis 4: x −→ x′
∆
= (x r0 x′) ∨ . . . ∨ (x rn x′)

3 P(X) is inductively invariant for a system called S, if{
∀x ∈ VALUES : INIT(x) ⇒ P(x)
∀x, x′ ∈ VALUES : P(x) ∧ x −→ x′ ⇒ P(x′)

P(X) is called an invariant in B

3 P(X) is a safety property for a system called S, if

∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

P(X) is called an assertion in B
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Modelling systems: first attempt

MODEL
m

. . .

. . .

. . .
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

3 A model has a name m

3 Flexibles variables x are declared
3 I(x) provides informations over x

3 P (x) provides informations over x

20



Checking safety properties of the model

3 ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

3 Solution 1 Writing a procedure checking INIT(x)∧x
?−→ x′ ⇒ P(x′) for each

pair x, x′ ∈ VALUES, when VALUES is finite and small.

3 Solution 2 Writing a procedure checking INIT(x)∧x
?−→ x′ ⇒ P(x′) for each

pair x, x′ ∈ VALUES, by constructing an abstraction of VALUES.

3 Solution 3 Writing a proof for ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′).
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Defining an induction principle for an operational model

(I) ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

if, and only if,

(II) there exists a state property I(x) such that:

∀x, x′ ∈ VALUES :


(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) I(x) ∧ x −→ x′ ⇒ I(x′)

if, and only if,

(III) there exists a state property I(x) such that:

∀x, x′ ∈ VALUES :


(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) ∀i ∈ {0, . . . , n} : I(x) ∧ x ri x′ ⇒ I(x′)
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Modelling systems: second attempt

MODEL
m

. . .

. . .

. . .
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀x, x′ ∈ VALUES : ∀i ∈ {0, . . . , n} :

I(x) ∧ x ri x′ ⇒ I(x′)
2� ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)
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Modelling systems: last attempt?

MODEL
m

?
?
?
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� What are the environment of the proof for proper-
ties?

2� What are theories?
2� How are defining the static objects?
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Modelling systems: last attempt!

MODEL
m

Γ(m)
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� Γ(m) defines the static environment for the proofs
related to m.

2� Γ(m) ` ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀i ∈ {0, . . . , n} :

Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ∧ x ri x′ ⇒ I(x′)
2� < Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)

25



Events System Models

An event system model is made of

State constants and state variables constrained by a state invariant

A finite set of events

Proofs ensures the consistency between the invariant and the events

An event system model can be refined

Proofs must ensure the correctness of refinement
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Modelling systems: Hello world!

MODEL
FACTORIAL EVENTS

CONSTANTS factorial, m
PROPERTIES

m ∈ N∧ factorial ∈ N ↔ N∧ 0 7→ 1 ∈ factorial∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial)∧

∀f ·


f ∈ N ↔ N∧
0 7→ 1 ∈ f∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f


VARIABLES

result
INVARIANT

result ∈ N
ASSERTIONS

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

INITIALISATION
result :∈ N

EVENTS
computation = begin result := factorial(m) end

END
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Modelling systems: relations to events

MODEL
m

SETS
s

CONSTANTS
c

PROPERTIES
P (s, c)

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
P (x)

INITIALISATION
Init(x)

EVENTS
{r0, . . . , rn}

END

2� Γ(m) defines the static environment for the proofs
related to m from s, c and P (s, c).

2� Γ(m) ` ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀i ∈ {0, . . . , n} :

Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ∧ x ri x′ ⇒ I(x′)
2� Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)
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A simple model SM

MODEL

SM

VARIABLES

x

INVARIANT

x : INTEGER &

x = -1

THEOREMS

x <= 0

INITIALISATION

x := -1

EVENTS

act =

WHEN x >= 0 THEN

x:=x+1

END

END

MODEL
SM

VARIABLES
x

INVARIANT
x ∈ Z
x = −1

THEOREMS
x ≤ 0

INITIALISATION
x := −1

EVENTS
act =

WHEN x ≥ 0 THEN
x := x+1

END
END
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Proof obligations for the model

2 Γ(SM) defines the static environment for the proofs related to arithmetic.

2 Γ(SM) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0
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Proof obligations for the model
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Proof obligations for the model

2� Γ(SM) defines the static environment for the proofs related to arithmetic.

2� Γ(SM) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0
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2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ x+1 ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ 1 ≤ 0: !
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Interpreting unprovable proof obligations

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ x+1 ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ 1 ≤ 0: !

2 x ≤ 0 is not (inductively) invariant for the model SM: it is a safety property.
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A simple model SM’

MODEL

SM’

VARIABLES

x

INVARIANT

x : INTEGER &

x <= 0

INITIALISATION

x := -1

EVENTS

act =

WHEN x >= 0 THEN

x:=x+1

END

END

MODEL
SM ′

VARIABLES
x

INVARIANT
x ∈ Z
x ≤ 0

INITIALISATION
x := −1

EVENTS
act =

WHEN x ≥ 0 THEN
x := x+1

END
END
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Proof obligations for the model SM’

2� Γ(SM ′) defines the static environment for the proofs related to arithmetic.

2� Γ(SM ′) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2� Γ(SM ′) ` ∀x, x′ ∈ Z : x ∈ Z ∧ x = −1 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ = −1

2� Γ(SM ′) ` x = −1 ⇒ x ≤ 0

2� The invariant is strong enough!
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Modelling systems

step 1: Understanding the problem to solve

step 2: Organizing requirements and extracting properties

step 3: Writing a first very abstract system model

step 4: Consulting the requirements and adding a new detail in the

current model by refinement

step 5: Either the model is enough detailed and the process stops,

or the model is not yet enough concrete and the step 4 is repeated.
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