Introducing formal modelling techniques
Dominique Meéry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and
Distributed Systems
September 26-29 2006, Paris, France



Formal modelling: why?

< Analysing requirements

< Providing a view of the system

< Justifying design decisions

< Integrating mechanized and sound techniques for analysing systems.

< Improving the communication among designers

< Promoting abstraction and refinement techniques for developing (systems) mod-
els

< Improving software systems quality




What systems?

< Distributed systems: distributed algorithms, agents-based systems, ...

< Embedded systems at home: mobile phone, wash machine, dish washer,
micro-wave. . .

<& Hardware/software systems: SoC

< Manufacturing systems




Organisation of lectures

< To develop models of realistic systems

< To introduce step by step concepts and notations

< To use tools

<& To play with abstractions and concretizations over models.




Summary of the lectures

» Introduction and History of B

» Event-based systemsin B

» Simple case studied

» Sequential algorithms and Data Modelling

» Distributed programming

» Proof based System Engineering

September 26-29 2006, Paris, France 26th IFIP WG 6.1 International Conference on Formal
Methods for Networked and Distributed Systems 1



Tools for the lectures

< Mathematical logic and set theory: B(ourbaki)

<& Proof assistants and Development assistants: B4free, AtelierB, ...

< Model checking: not required, but choose your way!

< Events System Models

< Induction

& Case studies: sequential algorithms, distributed algorithms, control access, ...




The History of B

< Jean-Raymond Abrial: Z in the 70s, B in the 80s, event B in the 90s and B*
In the current millenium.

< Books: the B Book by Jean-Raymond Abrial in 1996, the Bi#f Book by
Jean-Raymond Abrial in ????, others textbooks by K. Lano, H. Habrias, E.
Sekerinski and K. Sere, ...

< Conferences: ZB serie, ...
< Success story: Meteor ligne 14 (control system), Smartcards (Gemplus), ...

< Case studies: sequential algorithms (Schorr and Waite, ...), distributed al-
gorithms (IEEE 1394 leader election protocol, PCl Bus Producer/Consumer
Model,




Modelling systems

< A system is observed

< Observation of things which are changing over the time

< A system is characterized by a state

< A state is made up of contextual constant informations over the problem
theory and of modifiable flexible informations over the system.




Changing state of system

A flexible variable z is observed at different instants:

T T T T T T T

xg — T1 — X2 — T3 — ... T; — Tip] ...




Changing state of system

A flexible variable z is observed at different instants:

T T T T T T T
xg — T1 — X2 — T3 — ... T; — Tip] ...

7 hides effectives changes of state or actions or events




Changing state of system

A flexible variable z is observed at different instants:

T T T T T T T
xg — T1 — X2 — T3 — ... T; — Tip] ...

7 hides effectives changes of state or actions or events

aq Qo a3 o o - %41 Q42
xo — X1 — X — X3 — ... — T — Til] —




Changing state of system

A flexible variable z is observed at different instants:

T T T T T T T
xg — T1 — X2 — T3 — ... T; — Tip] ...

7 hides effectives changes of state or actions or events
aq Qo a3 o o 41 Q42

xo — X1 — X — X3 — ... — T — Til] —

Occurences of e 7 can be added between two instants ie stuttering steps:




Changing state of system

A flexible variable z is observed at different instants:

T T T T T T T
xg — T1 — X2 — T3 — ... T; — Tip] ...

7 hides effectives changes of state or actions or events

aq Qo a3 o o - %41 Q42
xo — X1 — X — X3 — ... — T — Til] —

Occurences of e 7 can be added between two instants ie stuttering steps:

aq ao T a3 ag (e %, T i+1 Q42
To — T1 — TR — TR — T3 —...— T; — Tj — Tip] —




Properties of system

A safety property S over x states that something bad will not happen: S(x) means
that S holds for x

An invariant property | over x states a strong safety property

aq a9 T a3 (oY) (o%; T Q41 Q42
To — L] — Tp — T — T3 ... — Ty — Ty — Tipl — ...

0" « 0" o Q;

(S(wo) 4 S(z1) f S(zz) = S(zz) = S(zz) = ... = S(zy) 5
S(z) ' S(zipq) 0.

or equivalently Vi € N : S(x;)




Your decision?

< You can check for every i in N that S(x;) is true but it can be long if states are
different

< You can compute an abstraction of the set of states

< You can try to prove and for instance the induction principle may be usefull

< So be carefull and improve your modelling before to run the checker

<& Use the induction




State properties of a system

<& A state property namely P(x) is a first order predicate with free variables =,
where z is a flexible variable.

& P(x) denotes the set of values of x such that P(x) holds.

& P(x) is interpreted over states of flexible variables for a system (s € States)

& s = P(x) means that P(x) holds, when one substitutes occurences of = by
values of x, s(x), in P(x).




Examples of state properties

< Mutual exclusion

< Deadlock freedom

< Partial correcteness

<& Safety properties




Relation/action over states

<& An action o over states is a relation between values of state variables before
and values of variables after

alz,z') orz - &/

<& Flexible variable x has two values x and /.

< Priming flexible variables is borrowed from TLA (See lectures of S. Merz)

< Hypothesis 1: Values of = belongs to a set of values called VALUES

< Hypothesis 2: Relations over = and =’ belong to a set of relations {rg, ..., }




Operational model of a system

< A system S is observed with respect to flexible variables x.

<& Flexible variables x of S are modified according to a finite set of relations over
the set of values VALUES: {rq,...,rn}

< INIT(x) denotes the set of possible intial values for .

OMS = (x, VALUES, INIT(z),{rg,...,"n})




Safety and invariance of system

<& Hypothesis 3: OMS = (x, VALUES, INIT(x), {rg,---,7"n})
<& Hypothesis 4: © — z/ = (xrgx’)V...V(zrnz)

& P(X) is inductively invariant for a system called S, if

Vo € VALUES : INIT(z) = P(x)
Vz,z' € VALUES : P(2) Az — 2/ = P(2')

P(X) is called an invariant in B

& P(X) is a safety property for a system called S, if
Vz,z' € VALUES : INIT(z) Az = 2/ = P(2))

P(x) is called an assertion in B




Modelling systems: first attempt

MODEL

VARIABLES
B < A model has a name m

INVARIANT <& Flexibles variables x are declared
I(z) <& I(x) provides informations over x
ASSERTIONS < P(x) provides informations over x
P(z)
INITIALISATION
Init(x)
RELATIONS

{rg,-..,rn}
END




Checking safety properties of the model

O Vo, € VALUES : INIT(z) Az = o/ = P(2))

& Solution 1 Writing a procedure checking INIT(z) Az — ' = P(z') for each
pair x, z' € VALUES, when VALUES is finite and small.

< Solution 2 Writing a procedure checking INIT(z) Az = 2’ = P(z’) for each
pair =z, ' € VALUES, by constructing an abstraction of VALUES.

< Solution 3 Writing a proof for Vz, 2’ € VALUES : INIT(z) A z = 2/ = P(a').




Defining an induction principle for an operational model

() Vz, 2’ € VALUES : INIT(2) A z = 2/ = P(a))

if, and only if,

() there exists a state property I(x) such that:
(1) INIT(2) = I(x)

Vz,z' € VALUES : { (2) I(x) = P(x)
3) () ANz — 2’ = ()

if, and only if,

(1) there exists a state property I(x) such that:
(1) INIT(2) = I(x)
Vz,z' € VALUES : { (2) I(z) = P(x)
(3)Vie{0,...,n} : l(x) Az r;z = I(z))




Modelling systems: second attempt

MODEL

VARIABLES U Ve, 2’ € VALUES : INIT(z) = (=)
x v Vz,z’ € VALUES : Vi € {0,...,n}:
INVARIANT
I(x) I(2) Az r; 2’ = 1(2)
ASSERTIONS , |
P(z) U Vx,z’ € VALUES : I(z) = P(x)
INITIALISATION
Init(x)
RELATIONS

{ro,..-,rn}
END




Modelling systems: last attempt?

VA;IABLES Zl What are the environment of the proof for proper-

INVARIANT ties?
I(x) i What are theories?
ASSERTIONS 7l How are defining the static objects?
P(x)
INITIALISATION
Init(x)
RELATIONS

{TO7 c arn}
END




Modelling systems: last attempt!

MODEL
m
r(m)
VARIABLES I I"'(m) defines the static environment for the proofs
xr
INVARIANT related to m.
I(2) 4 F(m) F Vo, 2’ € VALUES : INIT(2) = 1(2)
ASSERTIONS v Vie{0,...,n}:
P(x) F(m) -V, 2’ € VALUES : I(z) Az r; 2’ = I(2))
INITIALISATION U < (m) V2 € VALUES : I(z) = P(2)
Init(x)
RELATIONS
{ro,.--,rn}
END




Events System Models

An event system model is made of
State constants and state variables constrained by a state invariant
A finite set of events

Proofs ensures the consistency between the invariant and the events

An event system model can be refined

Proofs must ensure the correctness of refinement




Modelling systems: Hello world!

MODEL
FACTORIAL_EVENTS
CONSTANTS factorial, m
PROPERTIES
m € NA factortal € N « NAO+— 1 € factorial A
V(n, fn).(n — fn € factorial = n+1 +— (n+1)-fn € factorial) A

feN — NA
0O— 1€ fA
vi-| VY(n,fn).(n— fnef=n+1— (n+1)xfnef)
=
factorial C f
VARIABLES
result
INVARIANT
result € N
ASSERTIONS

factorial € N — N;

factorial(0) = 1 ;

Vn.(n € N = factorial(n+1) = (n+1) xfactorial(n))
INITIALISATION

result :€ N
EVENTS

computation = beginresult := factorial(m) end
END




Modelling systems: relations to events

MODEL

m
SETS

S
CONSTANTS

C
PROPERTIES 1 "(m) defines the static environment for the proofs

P(s,c) related to m from s, c and P(s, ¢).
VARIABLES 7 F(m) F Vo, 2’ € VALUES : INIT(2) = ()
X v Vie{0,...,n}:
INVARIANT M(m) - Vz, 2’ € VALUES : I(z) Ax7r; ! = I(ac/)

I(x
Ass(ER)TmNs 7 T(m) FVz, 2’ € VALUES : I(z) = P(2)

P(x)
INITIALISATION

Init(x)
EVENTS

{ro,.-.,rn}
END




A simple model SM

MODEL

SM
VARIABLES
X
INVARIANT

x : INTEGER &

x = -1
THEOREMS
x <=0
INITIALISATION
x = -1
EVENTS
act =
WHEN x >= 0 THEN
X:=x+1
END
END

MODEL
SM
VARIABLES
x
INVARIANT
x € 7
r= —1
THEOREMS
<0
INITIALISATION
r .= —1
EVENTS
act =
WHEN z > 0 THEN
r . =x+1
END
END




Proof obligations for the model

O F'(SM) defines the static environment for the proofs related to arithmetic.

OrM(SM)+FVz, 2’ €Z :z2=-1=x2<0

O FM(SM)+FVz, 2’ €¢Z :2<0Axz>0A2' =24+1=2"<0




Proof obligations for the model

i " (SM) defines the static environment for the proofs related to arithmetic.

dr(SMYrVz, 2’ €Z:2=-1=2<0

O FM(SM)+FVz, 2’ €¢Z :2<0Axz>0A2' =24+1=2"<0




Proof obligations for the model

i " (SM) defines the static environment for the proofs related to arithmetic.

dr(SM)rVe,2’€¢Z : 2=-1=2<0

OrMr(SM)FVz, 2’ €Z :2<0Az>0A2' =z+1=2"<0

OrM(SM)FVz, 2’ €Z:2=0A2' =z+1=2'<0

OrMr(SM)rFVz, 2’ €¢Z:2=0=2+1<0

O rM(SM)+FVz, 2’ €¢Z :2=0=1<0:!




Interpreting unprovable proof obligations

OFM(SM)FVz, 2’ €¢Z :2<0Axz>0A2' =24+1=2'<0
OrMSM)FVz, 2’ €Z :z2=0A2' =2+1=2'<0
OrM(SM)+FVz, 2’ €Z:2=0=2+1<0

O rM(SM)+FVz, 2’ €Z :2=0=1<0:!

0 x < 0is not (inductively) invariant for the model SM: it is a safety property.




A simple model SW’

MODEL
SM’
VARIABLES
X
INVARIANT
X : INTEGER &
x <= 0
INITIALISATION
X := —1
EVENTS
act =
WHEN x >= (0 THEN
X:=x+1
END
END

MODEL
SM’
VARIABLES
x
INVARIANT
x € 7
<0
INITIALISATION
r .= —1
EVENTS
act =
WHEN 2z > 0 THEN
r . =x+1
END
END




Proof obligations for the model SM’

v (SM") defines the static environment for the proofs related to arithmetic.

dr(SMHYFVz, 2’ €Z:2=-1=2<0

dr(SMHYrVz, 2’ €Z:2€ZNhNx=-1Nz>0AN2' =2+1=2' = -1

4 r(SMY)Fz=-1=2<0

I The invariant is strong enough!




Modelling systems

step 1: Understanding the problem to solve

step 2: Organizing requirements and extracting properties

step 3: Writing a first very abstract system model

step 4: Consulting the requirements and adding a new detail in the
current model by refinement

step 5: Either the model is enough detailed and the process stops,
or the model is not yet enough concrete and the step 4 is repeated.




