
Introducing formal modelling techniques

Dominique Méry

26th IFIP WG 6.1 International Conference on Formal Methods for Networked and

Distributed Systems

September 26-29 2006, Paris, France



Formal modelling: why?

3 Analysing requirements

3 Providing a view of the system

3 Justifying design decisions

3 Integrating mechanized and sound techniques for analysing systems.

3 Improving the communication among designers

3 Promoting abstraction and refinement techniques for developing (systems) mod-
els

3 Improving software systems quality

1



What systems?

3 Distributed systems: distributed algorithms, agents-based systems, . . .

3 Embedded systems at home: mobile phone, wash machine, dish washer,
micro-wave. . .

3 Hardware/software systems: SoC

3 Manufacturing systems

2



Organisation of lectures

3 To develop models of realistic systems

3 To introduce step by step concepts and notations

3 To use tools

3 To play with abstractions and concretizations over models.

3



Summary of the lectures

� Introduction and History of B

� Event-based systems in B

� Simple case studied

� Sequential algorithms and Data Modelling

� Distributed programming

� Proof based System Engineering

September 26-29 2006, Paris, France 26th IFIP WG 6.1 International Conference on Formal

Methods for Networked and Distributed Systems 1

4



Tools for the lectures

3 Mathematical logic and set theory: B(ourbaki)

3 Proof assistants and Development assistants: B4free, Atelier B, . . .

3 Model checking: not required, but choose your way!

3 Events System Models

3 Induction

3 Case studies: sequential algorithms, distributed algorithms, control access, . . .

5



The History of B

3 Jean-Raymond Abrial: Z in the 70s, B in the 80s, event B in the 90s and B]

in the current millenium.

3 Books: the B Book by Jean-Raymond Abrial in 1996, the B] Book by
Jean-Raymond Abrial in ????, others textbooks by K. Lano, H. Habrias, E.
Sekerinski and K. Sere, . . .

3 Conferences: ZB serie, . . .

3 Success story: Meteor ligne 14 (control system), Smartcards (Gemplus), . . .

3 Case studies: sequential algorithms (Schorr and Waite, . . . ), distributed al-
gorithms (IEEE 1394 leader election protocol, PCI Bus Producer/Consumer
Model,

6



Modelling systems

3 A system is observed

3 Observation of things which are changing over the time

3 A system is characterized by a state

3 A state is made up of contextual constant informations over the problem
theory and of modifiable flexible informations over the system.

7



Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

8



Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

9



Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

10



Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

11



Changing state of system

A flexible variable x is observed at different instants:

x0
τ→ x1

τ→ x2
τ→ x3

τ→ . . .
τ→ xi

τ→ xi+1
τ→ . . .

τ hides effectives changes of state or actions or events

x0
α1→ x1

α2→ x2
α3→ x3

α4→ . . .
αi→ xi

αi+1→ xi+1
αi+2→ . . .

Occurences of e τ can be added between two instants ie stuttering steps:

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

12



Properties of system

A safety property S over x states that something bad will not happen: S(x) means
that S holds for x

An invariant property I over x states a strong safety property

x0
α1→ x1

α2→ x2
τ→ x2

α3→ x3
α4→ . . .

αi→ xi
τ→ xi

αi+1→ xi+1
αi+2→ . . .

(S(x0)
α1→ S(x1)

α2→ S(x2)
τ→ S(x2)

α3→ S(x3)
α4→ . . .

αi→ S(xi)
τ→

S(xi)
αi+1→ S(xi+1)

αi+2→ . . .

or equivalently ∀i ∈ N : S(xi)

13



Your decision?

3 You can check for every i in N that S(xi) is true but it can be long if states are
different

3 You can compute an abstraction of the set of states

3 You can try to prove and for instance the induction principle may be usefull

3 So be carefull and improve your modelling before to run the checker

3 Use the induction

14



State properties of a system

3 A state property namely P (x) is a first order predicate with free variables x,
where x is a flexible variable.

3 P (x) denotes the set of values of x such that P (x) holds.

3 P (x) is interpreted over states of flexible variables for a system (s ∈ States)

3 s |= P (x) means that P (x) holds, when one substitutes occurences of x by
values of x, s(x), in P (x).

15



Examples of state properties

3 Mutual exclusion

3 Deadlock freedom

3 Partial correcteness

3 Safety properties

16



Relation/action over states

3 An action α over states is a relation between values of state variables before
and values of variables after

α(x, x′) or x
α−→ x′

3 Flexible variable x has two values x and x′.

3 Priming flexible variables is borrowed from TLA (See lectures of S. Merz)

3 Hypothesis 1: Values of x belongs to a set of values called VALUES

3 Hypothesis 2: Relations over x and x′ belong to a set of relations {r0, . . . , rn}

17



Operational model of a system

3 A system S is observed with respect to flexible variables x.

3 Flexible variables x of S are modified according to a finite set of relations over
the set of values VALUES: {r0, . . . , rn}

3 INIT(x) denotes the set of possible intial values for x.

OMS = (x, VALUES, INIT(x), {r0, . . . , rn})

18



Safety and invariance of system

3 Hypothesis 3: OMS = (x, VALUES, INIT(x), {r0, . . . , rn})

3 Hypothesis 4: x −→ x′
∆
= (x r0 x′) ∨ . . . ∨ (x rn x′)

3 P(X) is inductively invariant for a system called S, if{
∀x ∈ VALUES : INIT(x) ⇒ P(x)
∀x, x′ ∈ VALUES : P(x) ∧ x −→ x′ ⇒ P(x′)

P(X) is called an invariant in B

3 P(X) is a safety property for a system called S, if

∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

P(X) is called an assertion in B

19



Modelling systems: first attempt

MODEL
m

. . .

. . .

. . .
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

3 A model has a name m

3 Flexibles variables x are declared
3 I(x) provides informations over x

3 P (x) provides informations over x

20



Checking safety properties of the model

3 ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

3 Solution 1 Writing a procedure checking INIT(x)∧x
?−→ x′ ⇒ P(x′) for each

pair x, x′ ∈ VALUES, when VALUES is finite and small.

3 Solution 2 Writing a procedure checking INIT(x)∧x
?−→ x′ ⇒ P(x′) for each

pair x, x′ ∈ VALUES, by constructing an abstraction of VALUES.

3 Solution 3 Writing a proof for ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′).

21



Defining an induction principle for an operational model

(I) ∀x, x′ ∈ VALUES : INIT(x) ∧ x
?−→ x′ ⇒ P(x′)

if, and only if,

(II) there exists a state property I(x) such that:

∀x, x′ ∈ VALUES :


(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) I(x) ∧ x −→ x′ ⇒ I(x′)

if, and only if,

(III) there exists a state property I(x) such that:

∀x, x′ ∈ VALUES :


(1) INIT(x) ⇒ I(x)
(2) I(x) ⇒ P(x)
(3) ∀i ∈ {0, . . . , n} : I(x) ∧ x ri x′ ⇒ I(x′)

22



Modelling systems: second attempt

MODEL
m

. . .

. . .

. . .
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀x, x′ ∈ VALUES : ∀i ∈ {0, . . . , n} :

I(x) ∧ x ri x′ ⇒ I(x′)
2� ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)

23



Modelling systems: last attempt?

MODEL
m

?
?
?
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� What are the environment of the proof for proper-
ties?

2� What are theories?
2� How are defining the static objects?

24



Modelling systems: last attempt!

MODEL
m

Γ(m)
VARIABLES

x
INVARIANT

I(x)
ASSERTIONS

P (x)
INITIALISATION

Init(x)
RELATIONS
{r0, . . . , rn}

END

2� Γ(m) defines the static environment for the proofs
related to m.

2� Γ(m) ` ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀i ∈ {0, . . . , n} :

Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ∧ x ri x′ ⇒ I(x′)
2� < Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)

25



Events System Models

An event system model is made of

State constants and state variables constrained by a state invariant

A finite set of events

Proofs ensures the consistency between the invariant and the events

An event system model can be refined

Proofs must ensure the correctness of refinement

26



Modelling systems: Hello world!

MODEL
FACTORIAL EVENTS

CONSTANTS factorial, m
PROPERTIES

m ∈ N∧ factorial ∈ N ↔ N∧ 0 7→ 1 ∈ factorial∧
∀(n, fn).(n 7→ fn ∈ factorial ⇒ n+1 7→ (n+1)·fn ∈ factorial)∧

∀f ·


f ∈ N ↔ N∧
0 7→ 1 ∈ f∧
∀(n, fn).(n 7→ fn ∈ f ⇒ n+1 7→ (n+1)×fn ∈ f)

⇒
factorial ⊆ f


VARIABLES

result
INVARIANT

result ∈ N
ASSERTIONS

factorial ∈ N −→ N ;
factorial(0) = 1 ;
∀n.(n ∈ N ⇒ factorial(n+1) = (n+1)×factorial(n))

INITIALISATION
result :∈ N

EVENTS
computation = begin result := factorial(m) end

END

27



Modelling systems: relations to events

MODEL
m

SETS
s

CONSTANTS
c

PROPERTIES
P (s, c)

VARIABLES
x

INVARIANT
I(x)

ASSERTIONS
P (x)

INITIALISATION
Init(x)

EVENTS
{r0, . . . , rn}

END

2� Γ(m) defines the static environment for the proofs
related to m from s, c and P (s, c).

2� Γ(m) ` ∀x, x′ ∈ VALUES : INIT(x) ⇒ I(x)
2� ∀i ∈ {0, . . . , n} :

Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ∧ x ri x′ ⇒ I(x′)
2� Γ(m) ` ∀x, x′ ∈ VALUES : I(x) ⇒ P(x)

28



A simple model SM

MODEL

SM

VARIABLES

x

INVARIANT

x : INTEGER &

x = -1

THEOREMS

x <= 0

INITIALISATION

x := -1

EVENTS

act =

WHEN x >= 0 THEN

x:=x+1

END

END

MODEL
SM

VARIABLES
x

INVARIANT
x ∈ Z
x = −1

THEOREMS
x ≤ 0

INITIALISATION
x := −1

EVENTS
act =

WHEN x ≥ 0 THEN
x := x+1

END
END

29



Proof obligations for the model

2 Γ(SM) defines the static environment for the proofs related to arithmetic.

2 Γ(SM) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

30



Proof obligations for the model

2� Γ(SM) defines the static environment for the proofs related to arithmetic.

2� Γ(SM) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

31



Proof obligations for the model

2� Γ(SM) defines the static environment for the proofs related to arithmetic.

2� Γ(SM) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ x+1 ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ 1 ≤ 0: !

32



Interpreting unprovable proof obligations

2 Γ(SM) ` ∀x, x′ ∈ Z : x ≤ 0 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ∧ x′ = x+1 ⇒ x′ ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ x+1 ≤ 0

2 Γ(SM) ` ∀x, x′ ∈ Z : x = 0 ⇒ 1 ≤ 0: !

2 x ≤ 0 is not (inductively) invariant for the model SM: it is a safety property.

33



A simple model SM’

MODEL

SM’

VARIABLES

x

INVARIANT

x : INTEGER &

x <= 0

INITIALISATION

x := -1

EVENTS

act =

WHEN x >= 0 THEN

x:=x+1

END

END

MODEL
SM ′

VARIABLES
x

INVARIANT
x ∈ Z
x ≤ 0

INITIALISATION
x := −1

EVENTS
act =

WHEN x ≥ 0 THEN
x := x+1

END
END

34



Proof obligations for the model SM’

2� Γ(SM ′) defines the static environment for the proofs related to arithmetic.

2� Γ(SM ′) ` ∀x, x′ ∈ Z : x = −1 ⇒ x ≤ 0

2� Γ(SM ′) ` ∀x, x′ ∈ Z : x ∈ Z ∧ x = −1 ∧ x ≥ 0 ∧ x′ = x+1 ⇒ x′ = −1

2� Γ(SM ′) ` x = −1 ⇒ x ≤ 0

2� The invariant is strong enough!

35



Modelling systems

step 1: Understanding the problem to solve

step 2: Organizing requirements and extracting properties

step 3: Writing a first very abstract system model

step 4: Consulting the requirements and adding a new detail in the

current model by refinement

step 5: Either the model is enough detailed and the process stops,

or the model is not yet enough concrete and the step 4 is repeated.

36


